
RWTH AACHEN UNIVERSITY

BACHELOR-THESIS

ELFE – An interactive theorem prover
for undergraduate students

German title:

ELFE – Ein Interaktiver Theorembeweiser für die Lehre

Author:
Maximilian Doré

First examiner:
Prof. Dr. Jürgen Giesl

Second examiner:
Dr. Krysia Broda

Aachen, September 4, 2017

The present work was submitted to the
Chair for Computer Science 2

Research Group Computer Science 2: "Programming Languages and Verification"

iii

Abstract

ELFE is an interactive theorem prover with an easy to use language
and user interface. Many present interactive theorem provers
assume knowledge of automated theorem proving, ELFE tries to
abstract away the technicalities. This allows the system to be used
for teaching basic proof methods in discrete Mathematics.

The user inputs a mathematical text written in fair English. The text is
then converted to a special data-structure of first-order formulas. The
internal representation of the text implies certain proof obligations
which are checked by automated theorem provers. The background
provers try to either proof the obligations or find countermodels if
a obligation is wrong. The result of this verification process is then
returned to the user.

Background libraries for sets, relations and functions have been de-
veloped and allow for quickly writing proofs in these domains. The
system can be accessed via a reactive web interface or from the com-
mand line.

v

Acknowledgements

I express my sincere gratitude to my supervisor, Krysia Broda, for
her exceptional support during this work and for always nudging
me into the right directions.

I thank my second marker, Alessandra Russo, for her useful feedback
and Jürgen Giesl for giving me the opportunity to work on this
project.

Finally, I thank my family and friends for their unconditional love
and support.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Achievements . 2

2 Background 5
2.1 Logical background . 5

2.1.1 First-order logic . 5
2.1.2 Natural Deduction . 7
2.1.3 Herbrand’s Theorem . 8

2.2 Automated theorem proving . 9
2.2.1 Algorithm of Gilmore . 9
2.2.2 Resolution . 9
2.2.3 Term rewriting . 10
2.2.4 Superposition calculus . 12
2.2.5 Satisfiability modulo theories . 12

2.3 Implemented background provers . 13
2.3.1 TPTP format . 13
2.3.2 E PROVER . 14
2.3.3 SPASS . 14
2.3.4 Z3 . 14
2.3.5 BEAGLE . 15

2.4 Covered mathematical domains . 16
2.4.1 Relations . 16
2.4.2 Sets . 16
2.4.3 Functions . 16

3 Architecture of ELFE 19

4 The ELFE language 21
4.1 Statement sequences . 21
4.2 Verifying statement sequences . 23

4.2.1 Prover tasks . 23
4.2.2 Correctness of statement sequences 23

4.3 Proving with statement sequences . 25
4.3.1 Proved statements . 25

4.4 Overview of the ELFE language . 26
4.4.1 Formulas . 26
4.4.2 Top level sections . 28

4.5 Derivations . 29
4.5.1 Splitting a goal . 30

viii

4.5.2 Unfolding goals . 32
4.5.3 Inferring goals . 35
4.5.4 Extending the context . 36
4.5.5 Proving the final goal . 38

4.6 Meta level constructs . 38
4.6.1 Let construction . 38
4.6.2 Inclusions . 39

5 The ELFE system 41
5.1 Library . 41

5.1.1 Relations . 41
5.1.2 Sets . 43
5.1.3 Functions . 44

5.2 Command line interface . 47
5.3 Web interface . 48

6 Implementation of ELFE 53
6.1 Parsing derivations . 53
6.2 Verifying proof obligations . 56
6.3 Verifying a statement sequence . 56

7 Evaluation of ELFE 59
7.1 Limits of the system . 59
7.2 User feedback . 60

8 Related work 63
8.1 Mathematical text verifier . 63

8.1.1 SYSTEM FOR AUTOMATED DEDUCTION 63
8.1.2 NAPROCHE . 64

8.2 Interactive theorem prover . 65
8.2.1 ISABELLE . 66
8.2.2 COQ . 67

8.3 Higher order automatic theorem prover 68

9 Conclusion 71
9.1 Deliverables . 71
9.2 Future work . 71

9.2.1 Improvements and extensions 71
9.2.2 ELFE with higher-order ATP . 72

Bibliography 73

A Running proofs 75

B Tutorial 83

1

Chapter 1

Introduction

In the following, we will first motivate our work in Section 1.1 and describe the
objectives in Section 1.2. We conclude with giving an overview of the achieved work
and describing the structure of this report in Section 1.3.

1.1 Motivation

Since the information age began to emerge in the 1950s, mathematics were a main
interest for researchers. Mathematics is already somewhat formal, so it seemed to
be possible to let computers do proof exploration. Newell and Simon developed in
1956 the Logic Theorist Machine [20], which already could look for derivations of
statements with symbolic logic. The superior computational power of computers to
humans was able to explore mathematical derivations and lead to new knowledge.
Since computational power increased rapidly, it seemed likely that such systems
would soon substitute humans as mathematicians. As it turned out, this was wrong.

Finding proofs in symbolic logic is a hard problem. The search tree for proofs grows
exponentially, such that today it still takes a lot of resources to prove more complex
problems. Interactive theorem provers aim to close the gap between computational
and human reasoning. The user of such a system gives cornerstones of a proof, while
the system supports by checking simple steps in the proof. Such tools as ISABELLE

and COQ have evolved a lot and are used in active mathematical research, e.g., COQ

was used in proving the Four color theorem by Georges Gonthier [14].

The mentioned systems are tailored for advanced users. Working with these system
does not only require a long training period, but also deeper knowledge on how au-
tomated theorem proving works. In this work, we want to develop a system which
verifies texts close to how one would write a mathematical proof on a sheet of paper.
Consider the mathematical text in Text 1.1 which proves that if a composition of two
functions f and g is injective, f must be injective as well. A mathematician would
typically prove this by taking two elements x and x′ such that f maps them to the
same element (we have used curly brackets { and } to denote function application
here). By using the injectivity of the composition, one can show that this already
means that the two elements x and x′ were the same and thus, f is injective. In fact,
this is a correct ELFE proof which will be verified later on.

2 Chapter 1. Introduction

Lemma: g◦f is injective implies f is injective.
Proof:

Assume g◦f is injective.
Assume x ∈ A and x’ ∈ A and (f{x}) = (f{x’}).
Then ((g◦f){x}) = ((g◦f){x’}).
Hence x = x’.
Hence f is injective.

qed.

TEXT 1.1: Exemplary ELFE text

1.2 Objectives

"Perhaps this is the most promising aspect of formal proof: it is not merely
a method to make absolutely sure we have not made a mistake in a proof,
but also a tool that shows us and compels us to understand why a proof
works." — Georges Gonthier [14]

The main objective of ELFE was to create an interactive theorem prover which is
easily usable by students in the beginning of their mathematical studies. It aims for
having an easy language that is close to the intuitive mathematical language. The
archetype of the system was the SYSTEM FOR AUTOMATED DEDUCTION (SAD) [28].
This system provides a comprehensive and complex mathematical language which
allows to write down nearly natural proofs. We took its general approach of convert-
ing a mathematical text into a sequence of first-order formulas and giving resulting
proof obligations to automated theorem provers (ATP) as well as many syntax con-
structs. Going from there, we want to extend the system by a reactive web interface,
parallelizing the ATP work and a mathematical library for structures that mathemat-
ical students use in their first years. Additionally, we want to provide hints on why
a wrong proof fails. In order to do this, we want to give counterexamples to proof
obligations. This allows for locating breaking points in a proof.

Equipped with this, ELFE shall be a valuable tool for teaching mathematical proofs.
Students can play around with different approaches and get immediate feedback on
which proofs work. As a side-effect, the system may popularize formalized prov-
ing. Even though many advanced users use expert theorem provers like ISABELLE

or COQ, most students of Mathematics and Computer Science have no contact with
formalized proving in their undergraduate studies. By beginning formal proving
with an easy system, this may lower the barrier to use more complex systems later.

1.3 Achievements

We developed a powerful data structure for representing mathematical proofs, so-
called statement sequences. We can map many proving methods into this construction
and prove the correctness of our construction by a clear soundness criteria. This
may be used in the future as a framework for a theorem prover that combines other

1.3. Achievements 3

proving methods.

So far, we already have implemented some of these proving methods. They are ac-
cessible through a clean syntax and allow for proving many problems in discrete
mathematics. In combination with the created background libraries for sets, rela-
tions and functions, one can quickly start writing proofs. A proof can be entered via
command line or via a web interface which provides feedback on the verification
status. The verification is done in parallel with several background provers, which
look for proofs of the obligations as well as countermodels.

As a whole, this gives us a complete system to formalize mathematical proofs in a
fairly easy manner. This system may be extended in the future in many ways.

In Chapter 2, we will introduce the logical foundations of this work and understand
the operating principle of the used ATP. After giving an overview of the components
of the system in Chapter 3, we will introduce the internal proof representation and
language constructs in Chapter 4. The library and interfaces of the system will be
discussed in Chapter 5. Afterwards, we will take a look at certain implementation
details in Chapter 6. We will critically evaluate our work in Chapter 7 and compare
its working to other current theorem provers in Chapter 8. In the conclusion in
Chapter 9, we will give an outlook on what future extensions to the system could be
made.

5

Chapter 2

Background

We will first introduce the basic notions and lemmas used in this work in Section
2.1. With that we can give a fragmental overview of automated theorem proving
in Section 2.2 and introduce the used background provers in Section 2.3. We will
conclude by introducing the mathematical domains covered in the ELFE library in
Section 2.4.

2.1 Logical background

First, we will introduce the used notations for first-order logic in Section 2.1.1. Then
we will take a short look at the natural deduction system in Section 2.1.2. We will
conclude with presenting the foundation for present automated theorem proving in
Section 2.1.3, Herbrand’s Theorem.

2.1.1 First-order logic

We will define first-order logic in the following over the alphabet L.

Definition 2.1. Alphabet.
An alphabet L consists of

• quantifier symbols ∃ and ∀,
• logical connectives ¬, ∧, ∨,→ and↔,
• parentheses (and),
• an infinite set of variables,
• predicate symbols, each with a fixed arity,
• function symbols, each with a fixed arity,
• the equality symbol =.

We will use x, y, z as variables in the following and, among others, P,Q,R, positive
as predicate and f, g, union as function symbols. Even though predicates and func-
tions have overlapping notations, it is always obvious which is which due to a po-
sition in a formula as we will see in the following. Over the alphabet we can define
mathematical objects.

Definition 2.2. Terms.
Terms of an alphabet L are inductively defined with

• variables are terms,

6 Chapter 2. Background

• f(t1, ..., tn) is a term if t1, ..., tn are terms and f is a function symbol with arity
n in L.

Later on, we will consider a certain class of terms, so-called ground terms. Ground
terms do not contain any variables. We call s a subterm of t, denoted t[s], if s is
contained in t. E.g., g(z) is a subterm of the term f(x, y, g(z)). For arity 0 we omit
the parentheses and write a for the function a. We will use the so-called constants
a, b, c in the following.

In order to express mathematical statements, we want to define relations between
terms. This is done with formulas.

Definition 2.3. Formulas.
Formulas are inductively defined with

• ∃x.φ, ∀x.φ are formulas if φ is a formula and x is a variable,
• ¬φ, φ ∧ ψ, φ ∨ ψ, φ→ ψ, φ↔ ψ are formulas if φ and ψ are formulas,
• P (t1, ..., tn) is a formula if t1, ..., tn are terms and P is a predicate symbol with

arity n,
• t1 = t2 is a formula if t1, t2 are terms.

We will primarily consider sentences in the following, i.e., formulas with only bound
variables. A variable x is bound if it occurs in a formula initially quantified, i.e., in
the form ∃x.φ or ∀x.φ. Note also that we will write t1 6= t2 for ¬(t1 = t2). In or-
der to avoid ambiguities, nested formulas are enclosed with parentheses. However,
we will often omit these in the following and assume that ¬ has the highest prece-
dence, then ∧ and ∨, afterwards→ and ↔ and finally the quantifiers ∀ and ∃ with
the least precedence. For example, we will write ∃x.P (x) ∧ ¬Q(x) → R(x) instead
of ∃x.((P (x) ∧ (¬Q(x)))→ R(x)).

In order to define the semantics of first-order logic, we have to take into account the
domain of discourse D, i.e., which objects we want to make statements about. We
then define a so-called structure D, which assigns each predicate and function sym-
bol of L an object ofD and contains the predicative and functional relations between
the objects. Additionally to the structure D, we need a function β which assigns all
free variables an object of D. This tuple I = (D, β) is a so-called interpretation. An
interpretation is called model of φ if it evaluates φ to be true. We refer to [15, p. 52]
on how to evaluate a formula φ under an interpretation I.

Consider the exemplary formula φ = ∃x.philosopher(x). Then the interpretation
I = (D, β) is a model of φ with D = {philosopher, socrates}, D maps each element
ofD to itself and contains the relation philosopher(socrates), and the function β = ∅.

An interpretation I is called model for a set of formulas Γ if I is a model for all
γ ∈ Γ. A formula is a tautology if it holds in all interpretations, satisfiable if it holds
in at least one interpretation and unsatisfiable if it holds in no interpretation. Two
formulas φ and ψ are called equivalent if an interpretation I is a model of φ if and
only if I is a model of ψ. Two formulas φ and ψ are called equisatisfiable if φ is
satisfiable if and only if ψ is satisfiable.

2.1. Logical background 7

With the notion of models we can define the central property automated theorem
provers want to prove: Given a set of axioms Γ, does a formula φ follow from them?

Definition 2.4. Semantical consequence.
Let Γ be a set of first-order formulas and φ a first-order formula. Then φ is a se-
mantical consequence of Γ, denoted Γ � φ, iff every model of Γ is also a model of
φ.

We can disprove semantical consequence by giving an interpretation that is model
of Γ, but not a model of φ. Such an interpretation is called countermodel.

2.1.2 Natural Deduction

In order to answer the question of semantical consequence, many deduction systems
have been developed. They all try to reduce the semantical question Γ � φ to a syn-
tactical one: If we develop a technique that allows for deriving Γ ` φ syntactically
if and only if Γ � φ, we do not have to take into account all possible interpretations
but can answer the question easily. We will present the natural deduction system de-
veloped by Gerhard Gentzen in 1934 [10]. His goal was to give a deduction system
that is close to how a human writes a proof. Indeed, we will recognize some of the
derivation rules in the ELFE system later on. Additionally, we use natural deduction
to show soundness of our constructions. See [9] for a more in-depth discussion of
natural deduction.

The system consists of the following deduction rules:

(¬¬E) :
¬¬P
P

(∨I) :
P

P ∨Q
(∨E) :

P ∨Q P ` R Q ` R
R

(∧I) :
P Q

P ∧Q
(∧E) :

P ∧Q
P

(→ I) :
P ` Q
P → Q

(→ E) :
P → Q P

Q

(∃I) :
P (a)

∃x.P (x)
(∃E) :

∃x.Q(x) Q(a) ` P
P

(P does not contain a)

(∀I) :
P (a)

∀x.P (x)
(a not occurring in P (x)) (∀E) :

∀x.P
P (a)

For example, we want to show that {P, P → Q} � P ∧Q with natural deduction: We
can derive from P , P → Q with (→ E) that Q. Then, (∧I) gives us from P , Q that
P ∧ Q. We write Γ `nd φ if it is possible to derive φ from Γ with the given rules. In
fact, natural deduction is a sensible proof system.

Theorem 2.1. Natural deduction soundness and completeness.
Natural deduction is sound and complete, i.e., Γ � φ iff Γ `nd φ.

We refer to [9, p. 90f.] for a proof.

8 Chapter 2. Background

Even though natural deduction can be implemented mechanically, most present sys-
tems use other approaches to automated theorem proving. The many deduction
rules lead to an explosion of possible derivation paths. In particular, it is unclear
when and how to instantiate variables.

2.1.3 Herbrand’s Theorem

Jacques Herbrand laid the foundation for automated theorem proving in 1930. His
main idea was to instantiate the variables of a first-order formula with the terms of
the formula itself. Together with a structure that interprets the predicate and func-
tion symbols of a formula with itself, this is enough to show unsatisfiability of a
formula. In particular, his procedure terminates after a finite number of steps if the
formula is unsatisfiable (assuming a sensible proof search). Due to the correspon-
dence that ∧

{γ|γ ∈ Γ} ∧ ¬φ is unsatisfiable iff Γ � φ,

this gives us a semi-decision procedure for semantical consequence [7].

Consider a sentence φ. In order to apply Herbrand’s theorem, we will do some pre-
processing φ in the right form. First, all quantifiers are put outwards, leading to the
prenex normal form. Then, all existential quantifiers are removed by skolemiza-
tion. The resulting formula is not equivalent to the original one, but equisatisfiable.
Since we are only interested in unsatisfiability, this suffices. We refer to [16] for an
in-depth discussion of this preprocessing.

At this point, we have a formula of the form ∀x1, ...,∀xn.φ were φ is quantifier-free
and only contains the variables x1, ..., xn. The crucial step now is to consider only
ground instances, i.e., all ground terms interpreted as themselves. As we recall,
ground terms are terms that can be built from constants and function symbols with-
out the use of variables.

Definition 2.5. Herbrand universe.
The Herbrand universe of an alphabet L is the set of all ground terms. If L does not
contain any constants, a constant c0 is added.

For example, the alphabet that contains a constant a and a function f with arity one
has the Herbrand universe {a, f(a), f(f(a)), ...}.

The Herbrand universe is possibly infinite. We can approximate it with the Her-
brand expansion, which simply enumerates elements of the Herbrand universe.
The Herbrand universe forms the domain of discourse for the Herbrand structure,
which interprets each function symbol of the Herbrand universe with itself. Her-
brand’s theorem now shows us that it is sufficient to consider the Herbrand structure
to investigate unsatisfiability of a formula.

Theorem 2.2. Herbrand’s theorem.
A formula φ is unsatisfiable iff there is a finite unsatisfiable set of ground terms of φ.

We refer to [16, p. 156] for a proof of Herbrand’s Theorem.

2.2. Automated theorem proving 9

2.2 Automated theorem proving

With Herbrand’s theorem, we have a mechanical procedure to answer the question
of semantical consequence. We do not have to consider all possible interpretations
of a formula, but only the (possibly infinite) set of ground terms. If we have found a
contradiction in this set, we know the formula to be unsatisfiable.

We will give an incomplete overview of the algorithms and concepts that are rel-
evant to background provers in ELFE in the following. We will start with its first
implementation by Gilmore in Section 2.2.1, introduce the resolution principle in
Section 2.2.2, give an overview to term rewriting in Section 2.2.3 and finally con-
clude with the state-of-the-art superposition calculus in Section 2.2.4.

2.2.1 Algorithm of Gilmore

One of the first naive implementations of Herbrand’s theorem were done by Gilmore
in 1960 [16]. It enumerate larger and larger sets of the Herbrand expansion and
checks if they build up a contradiction. This can be done rather efficiently by putting
the ground instances into disjunctive normal form and checking each disjunct for
complementary literals. However, the set of ground instances grows very quickly.
Since this proof search is not directed in any way, Gilmore’s algorithm is not useful
for more complex theorems. We need to navigate more cleverly through all possible
instantiations.

2.2.2 Resolution

Humans tend to find instantiations intelligently based on some understanding of the
problem. Correspondingly, a machine also should not blindly enumerate ground in-
stances, but instantiate variables in a clever way. This can be done by unification.
We will present resolution here, see [16] for other methods that use unification like
tableaux and model elimination.

The goal of unification between two terms is instantiate their variables in such a
way that the terms become equal. The instantiation of their variables is done by
substitution.

Definition 2.6. Substitution.
A substitution σ is a mapping from a set of variables to a set of terms.

Consider the substitution σ = {x 7→ a, y 7→ g(b)}. If we apply σ to a term t =
P (f(x), y), denoted tσ, we replace all variables by the corresponding terms, leading
to tσ = P (f(a), g(b)).

Definition 2.7. Unifier and unifiable.
A substitution σ is a unifier for two terms t1 and t2 with distinct variables iff t1σ =
t2σ. We then say t1 and t2 are unifiable.

For two terms t1 = P (f(x), y) and t2 = P (z, g(b)), the substitution σ = {x 7→ a, y 7→
g(b), z 7→ f(a)} is a unifier since t1σ = P (f(a), g(b)) = t2σ.

10 Chapter 2. Background

Resolution considers formulas in clausal normal form (CNF). Formulas in CNF are
conjunctions of clauses. Clauses in turn are disjunctions of positive and negative
atoms. Thus, a formula in CNF is of the form:∧∨

(¬)Pi(x1, ..., xn)

In order to show unsatisfiability of a formula in CNF, we transform the clauses with
equivalence transformations until we produce an empty clause – then, no satisfying
assignment for this clause exists. Since all clauses of a formula in CNF need to be sat-
isfied for the formula to be satisfied, this shows unsatisfiability of the whole formula.

The resolution method implements the following observation: If two clauses C1 and
C2 contain the same term p once positive and once negated, we have to consider both
clauses together without p – otherwise, if one of the clauses is satisfiable without p,
the other is also satisfiable by adequately interpreting p. In first-order logic, this
corresponds to the following rule:

C1 ∨ p1 C2 ∨ ¬p2
C1σ ∨ C2σ

C1 and C2 no common variables, σ is unifier of p1 and p2

Consider the example in Figure 2.1. In order to show unsatisfiability of (P (f(a)) ∨
¬Q(x)) ∧ ¬P (y) ∧Q(g(a)), we derive the empty clause with two unifications.

�

¬Q(x)

P (f(a)) ∨ ¬Q(x) ¬P (y)
Q(g(a))σ = {y 7→ f(a)}

σ = {x 7→ g(a)}

FIGURE 2.1: Example of first-order resolution

Resolution provides a more goal-oriented way of applying Herbrand’s theorem and
is refutationally complete. Many variants and refinements of resolution were devel-
oped, such as factoring, subsumption, tautology elimination and redundancy elim-
ination [16]. Even though resolution is cleverer than just enumerating clauses, the
search space for a proof is still quite big. In particular, the equality sign leads to
problems.

2.2.3 Term rewriting

One could simply add the axioms for equality as an equivalence relation to the back-
ground theory – equality is in principal nothing more but a binary predicate. How-
ever, this leads to many possible derivation paths. The main idea of term rewriting is

2.2. Automated theorem proving 11

to direct the equality sign. With this, it is possible to analyse the structure of the for-
mulas more precisely and avoid redundant expansions which are not goal-oriented.

Definition 2.8. Rewrite rule.
A rewrite rule l → r is a directed equation between two terms l and r where r does
not contain any variables l does not contain.

A rewrite rule l → r rewrites a term t if there is a subterm t′ of t and a substitution
σ such that lσ = t′. The rule is applied by replacing t′ with rσ in t. We

Definition 2.9. Term Rewriting System (TRS).
A set of rewrite rulesR is called a Term Rewriting System (TRS).

If a term t can be rewritten to t′ by applying a rule of a TRS R, we denote this as
t→R t′. If several rewrite steps are needed, we denote this as t�R t′.

When transforming a set of equations E to a term rewriting systemR, one has to take
care that E andR are equivalent, i.e., the congruence closures of E andR contain the
same terms.

We are interested in two crucial properties of a TRS R: R should be terminating,
i.e., the relation→R should be well-founded. Additionally, R should be confluent,
i.e., it should not matter in which way the rewrite steps are applied. This gives us
an efficient way to check if two terms t1 and t2 are equal: We rewrite both with arbi-
trary rules of the TRS until no more rule can be applied. We then have t1 �R s and
t2 �R s if and only if both terms are equal in the original equation system E .

Since TRS are Turing-complete, showing termination of a TRS is in general not de-
cidable due to the Halting problem. However, many methods have been developed
to show termination for certain classes of TRS. An often successful method is to show
that the rewrite relation →R is contained in another relation which is known to be
terminating. These relations are called orderings. Examples for such orderings are
the Recursive path ordering and the Lexicographic path ordering. These orderings
specify a precedence for the function symbols used in the TRS.

If a TRS is not terminating, one can add rewrite rules to the system such that it termi-
nates. Once we have a terminating TRS, we can show confluence significantly easier
by showing the weaker property of local confluence with Newman’s Lemma. We
refer the reader to [12] for an in-depth discussion of these techniques.

Term rewriting could be applied directly in automated theorem proving to show a
lemma with equality: If we construct for the context an equivalent TRS which is ter-
minating and confluent, we can just rewrite both sides of the lemma and compare
their normal forms. More often, term rewriting is used to simplify a given prob-
lem. By converting instance clauses into normal forms, comparing different clauses
is more efficient.

The concept of term orderings is also used to improve resolution: Since the term
orderings produce a precedence for the function symbols, one can introduce a certain

12 Chapter 2. Background

notion of maximality of terms. This maximality can be used to decide on which
resolution step to apply. Ordered resolution frequently finds the right derivation
path significantly faster than blind walking through the search space.

2.2.4 Superposition calculus

In order to handle equality efficiently, an evident way is to introduce inference rules
for equality. Such an inference system was first introduced with paramodulation
by Robinson and Wos in 1969 [24]. Paramodulation is refutationally complete and
already more efficient than adding rules for equality to the background theory. The
concept was refined with superposition in 1991 by Bachmair and Ganzinger [3]. The
superposition calculus uses the following inference rules to derive an empty clause:

(= Resolution) :
C ∨ s 6= s′

Cσ
where σ unifies s and s′

(= Factoring) :
C ∨ s = t ∨ s′ = t′)

(C ∨ t 6= t′ ∨ s = t′)σ
where σ unifies s and s′

(SP Right) :
D ∨ t = t′ C ∨ s[u] = s′

(D ∨ C ∨ s[t′] = s′)σ
where σ unifies t and u, u not a variable

(SP Left) :
D ∨ t = t′ C ∨ s[u] 6= s′

(D ∨ C ∨ s[t′] 6= s′)σ
where σ unifies t and u, u not a variable

For example, to show the unsatisfiability of f(a) = x ∧ g(x) = b, we can apply (SP
Right) to retrieve g(f(a)) = b. Since this equation does not contain any variables and
we have g(f(a)) 6= b, we can apply (= Resolution) to retrieve the empty clause.

One can make the calculus terminating by finding well-founded term orderings.
Analogue to ordered resolution, a prover can decide which rule to apply when based
on the precedence of the function symbols. Finding appropriate termination order-
ings is one of the major costs in superposition-based theorem proving. Once this is
done, superposition has turned out to be a very efficient calculus. It has been proven
refutationally complete [3] and is used in many present theorem provers, e.g., VAM-
PIRE, E PROVER and SPASS [23] [26] [29].

2.2.5 Satisfiability modulo theories

So far, we only have considered progress made in automation theorem proving in the
first-order predicate calculus. In parallel, the satisfiability problem for propositional
logic (SAT) has been researched extensively. As a result, SAT checking, even though
NP-complete, has become very efficient [18]. Satisfiability modulo theories (SMT)
provers harness the efficiency of modern SAT solving for certain theories in first-
order logic. Consider if we want to check the correctness of a statement in integer
arithmetic:

x < y ∧ x+ y < y

2.3. Implemented background provers 13

Then we are not interested in non-standard interpretation of the predicate < and
the function symbol +, but only in < as the normal ordering of integers and + as
the addition operation. Thus, we can try to convert a first-order problem into a
propositional one with regard to a certain background theory. Since first-order logic
is in general not reducible to propositional logic, the conversions may be unsound.
Hence, we have to check the generated assignments for validity in our first-order
formula and feedback possible conflicts. This give us the broad operating principle
of SMT checkers:

• SAT checkers are used to generate propositionally satisfiable assignments
• Underlying theory solvers test their satisfiability in the background theories
• Possible conflicts are back-tracked in the SAT solvers

A popular approach to SAT is the The Davis–Putnam–Logemann–Loveland (DPLL),
whose basic principle was developed in 1962. Broadly speaking, DPLL assigns a
value to a variable and checks if it breaks overall satisfiability. If it does not, it goes
on with the next variable. If it does, it alters the variable and possibly the assignment
of the previous variable. This back-tracking is a memory-efficient way to navigate
through the space of possible assignments and has been refined in many ways since
then. [18]

We refer to [18] for a detailed discussion of SMT procedures.

2.3 Implemented background provers

The ELFE system can use arbitrary background provers which interface with the
TPTP format. We will introduce this format in Section 2.3.1 and then shortly in-
troduce the currently implemented background provers E PROVER in Section 2.3.2,
SPASS in Section 2.3.3, Z3 in Section 2.3.4 and BEAGLE in Section 2.3.5.

2.3.1 TPTP format

The TPTP library (Thousands of Problems for Theorem Provers) is maintained by the
University of Miami [25]. It provides a language standard for expressing first-order
formulas, conjunctive normal forms and typed higher-order logic. See an exemplary
TPTP file in Figure 2.2. Such a file consists of a list of fof formulas. The first argu-
ment gives the user the possibility to give an identifier. The second argument is
axiom for all formulas in the context and conjecture for the formula to be proven.
In the example, the conjecture is that there exists a philosopher. This can be proven
since both hume and socrates are philosophers. Strings starting with an uppercase
letter are variables, e.g., X. Predicates and functions are denoted with a starting low-
ercase letter. Functions with arity 0 are constants.

fof(socrates,axiom,(philosopher(socrates))).
fof(hume,axiom,(philosopher(hume))).
fof(philosopher,conjecture,(? [X] : (philosopher(X)))).

FIGURE 2.2: Exemplary TPTP file

14 Chapter 2. Background

2.3.2 E PROVER

E PROVER is a theorem prover for first-order logic with equality developed by Stephan
Schulz at the University Stuttgart. It implements superposition calculus and rewrit-
ing. A heuristic evaluation function is used to decide which clauses are resolved.
[26]

If we run E PROVER to solve the TPTP problem given in Figure 2.2, it transforms the
problem into clausal form. As we see in Figure 2.3, it yields the first-order formu-
las relevant for the proof, i.e., the statement that Hume is a philosopher proves the
conjecture.

Proof found!
SZS output start CNFRefutation
fof(philosopher, conjecture, (?[X1]:philosopher(X1)), philosopher)).
fof(hume, axiom, (philosopher(hume)), hume)).

FIGURE 2.3: Exemplary proof of E PROVER

2.3.3 SPASS

SPASS is a first-order prover with equality developed at the Max-Planck-Institute
for Computer Science. It implements inference rules based on resolution, paramod-
ulation and superposition [2].

As we see in Figure 2.4, SPASS gives the user the refutation sequence that proved the
conjecture. Since socrates was found to be a philosopher, the system concludes that
there is a philosopher. The program also yields the premises used for the refutation.

SPASS beiseite: Proof found.
% SZS status Theorem
Here is a proof with depth 0, length 3 :
% SZS output start Refutation
1[0:Inp] || -> philosopher(socrates)*.
3[0:Inp] philosopher(u) || -> .
4[0:UnC:3.0,1.0] || -> .
% SZS output end Refutation
Formulae used in the proof : socrates philosopher

FIGURE 2.4: Exemplary proof of SPASS

2.3.4 Z3

The SMT checker Z3 is developed by Microsoft. It uses the DPLL procedure. Among
others, background theories for linear and nonlinear arithmetic are implemented
[19].

As we see in Figure 2.5, Z3 types the initially untyped input formulas. The pred-
icate philosopher gets the type ι → o, socrates the type ι. In this example, Z3
proves the conjecture with the resolution method. After transforming the conjec-
ture into negated normal form, the relevant clause in the refutation sequence is

2.3. Implemented background provers 15

philosopher(X)) in formula 5. Since socrates is a philosopher and it is possible
to unify X and socrates, the system derives the empty clause and thus proves the
original conjecture that there is a philosopher.

% SZS status Theorem
% SZS output start Proof
tff(philosopher_type, type, (

philosopher: $i > $o)).
tff(socrates_type, type, (

socrates: $i)).
tff(1,plain,

(![X1: $i] : ((~philosopher(X1)) <=> (~philosopher(X1)))),
inference(reflexivity,[status(thm)],[])).

tff(2,plain,
((![X: $i] : (~philosopher(X)) <=> ![X: $i] : (~philosopher(X)))),
inference(quant_intro,[status(thm)],[1])).

tff(3,axiom,((~?[X: $i] : philosopher(X))), philosopher).
tff(4,plain,

(![X1: $i] : $oeq((~philosopher(X1)), (~philosopher(X1)))),
inference(reflexivity,[status(thm)],[])).

tff(5,plain,(
![X: $i] : (~philosopher(X))),
inference(nnf-neg,[status(sab)],[3, 4])).

tff(6,plain,
(![X: $i] : (~philosopher(X))),
inference(modus_ponens,[status(thm)],[5, 2])).

tff(7,axiom,(philosopher(socrates)), socrates).
tff(8,plain,

(((~![X: $i] : (~philosopher(X))) | (~philosopher(socrates)))),
inference(quant_inst,[status(thm)],[])).

tff(9,plain,
($false),
inference(unit_resolution,[status(thm)],[8, 7, 6])).

% SZS output end Proof

FIGURE 2.5: Exemplary proof of Z3

2.3.5 BEAGLE

BEAGLE is a theorem prover for first-order logic with equality. It uses a novel ap-
proach of hierarchic superposition, i.e., it combines a superposition based prover
with an SMT checker. Currently, linear integer and linear rational arithmetic back-
ground theories have been built in. [4]

Consider the TPTP problem in Figure 2.6. It states that all philosophers are scape-
graces, which is wrong since Socrates was not. If we run BEAGLE, it yields the clause
set that disproved the conjecture in Figure 2.7. This acts as a countermodel under the
Herbrand structure. A user thus can conclude that its proof obligation was wrong
since socrates does not comply with it. The constant #skF_1 is a result of internal
skolemization and another counter example for the conjecture.

16 Chapter 2. Background

fof(philosopher,axiom,(philospher(socrates))).
fof(scapegrace,axiom,(~(scapegrace(socrates)))).
fof(lazy,conjecture,(! [X] : ((philosopher(X)) => scapegrace(X)))).

FIGURE 2.6: Exemplary TPTP file

% SZS status CounterSatisfiable for counter.tptp
Saturated clause set:
¬scapegrace(#skF_1)
¬scapegrace(socrates)
philospher(socrates)
philosopher(#skF_1)

FIGURE 2.7: Exemplary countermodel from BEAGLE

2.4 Covered mathematical domains

The ELFE system comes with a library which will be introduced in Section 5.1. The
library is build for basic mathematical domains. We assume familiarity with these
domains and will only introduce the used notations in the following.

2.4.1 Relations

Relations assign truth values to tuples of elements with fixed arity. We writeR[x1, ..., xn]
if the relationR has arity n and assigns true to the tuple (x1, ..., xn). The complement
RC consists of all tuples that are not inR. We will primarily consider binary relations
in the following. The inverse of a binary relation reverses the order of the tuples, i.e.,
R−1[y, x] iff R[x, y].

Another relation S is called a subrelation of R, denoted S ⊆ R, if every tuple of S is
also in R. A tuple x belongs to the union R ∪ S if it is in at least one of the relations.
A tuple x belongs to the intersection R ∩ S if it is in both relations.

2.4.2 Sets

A set is a collection of distinct objects. If an object x belongs to a setA, this is denoted
with x ∈ A. The complement of A, denoted AC , consists of all elements that are not
in A.

Another set B is called a subset of A, denoted B ⊆ A, if every element of B is also
in A. The powerset of A, denoted P(A), is the set of all subsets of A. An element x
belongs to the union A∪B if it is in at least one of the sets. An element x belongs to
the intersection A ∩B if it is in both sets.

2.4.3 Functions

A function f : A → B is a left-total and right-unique relation between two sets A
and B. In other words, every element of A is related to exactly one element of B. We
say a maps to b if f relates a and b, denoted f(a) = b. A function f is called injective

2.4. Covered mathematical domains 17

if every element of A is mapped to a different element of B. A function f is called
surjective iff every element of B is mapped on. If a function is both injective and
surjective, it is called bijective. Any bijective function has an inverse function f−1

with f−1(y) = x iff f(x) = y.

The composition of two functions f : A → B and g : B → C, denoted g ◦ f , results
from the transitive application of both functions, i.e., (g ◦ f)(x) = z if f(x) = y and
g(y) = z.

19

Chapter 3

Architecture of ELFE

The ELFE system accepts texts in a pseudo-natural mathematical language. The user
may enter a text via the command line or a web interface, see Figure 3.1. The text
is then transformed into an internal representation, so-called statement sequences.
This happens inside the parser. The internal representation imply certain proof obli-
gations that need to be checked by background provers. This is done within the
verifier. The verifier will call several background provers that try to prove the obli-
gations in prover.

An entered proof may be incomplete or contain errors. To make it easier for the user
to see these mistakes and correct the proof, we try to give countermodels to the user.
This is represented with the module countermodels. The results are given back to the
verifier. From there, we can give feedback to the user via their chosen interface.

Command line

Web interface

Parser Verifier

Prover

Countermodels

FIGURE 3.1: Architecture of the ELFE system

In the following, we will introduce the internal representation of mathematics used
in ELFE in Chapter 4. With that, we can present the language constructs of ELFE

and their conversion to the internal representation. We will show the soundness of
our constructions and what proof obligations need to be checked by background
provers.

Afterwards, we will take a look at the provided libraries about sets, relations and
functions in Chapter 5. We will shortly introduce the command line and web inter-
face.

We will conclude with an explanation of crucial algorithms of the system in Chapter
6. In particular, we will take a look at how a proof is parsed, parallel execution of
the background provers and the algorithm for checking the correctness of statement
sequences.

20 Chapter 3. Architecture of ELFE

Note that Appendix B gives a short tutorial to the language constructs for the impa-
tient.

21

Chapter 4

The ELFE language

In order to introduce the ELFE language, we will first take a look at how mathemati-
cal texts are represented internally in ELFE. This is done in Section 4.1. Since we use
background provers to check certain formulas, we take a look at how this is done in
Section 4.2. We define a soundness criterion for statements which allows us define
what a sensible proof is in Section 4.3. With that, we can introduce the implemented
language features in Section 4.4, Section 4.5 and Section 4.6.

4.1 Statement sequences

The data structure used within ELFE are so-called statement sequences, where a state-
ment consists of an identifier, a first-order formula and a proof method as formalized
in Definition 4.1.

Definition 4.1. Statement.
A statement S is a tuple of the form ID × GOAL × PROOF where

• ID is an alphanumeric string which is unique for each statement
• GOAL is a formula in first-order logic
• PROOF is either

ASSUMED or
BYCONTEXT or
BYSUBCONTEXT Id1, ..., Idn or
BYSEQUENCE S1, ..., Sn or
BYSPLIT S1, ..., Sn

If a statement S is proved BYSEQUENCE S1, ..., Sn or BYSPLIT S1, ..., Sn, we call
S1, ..., Sn the children of S. If we want to access S from a child Si, we write Si.PARENT

in the following. On the top level, a statement has no parent, thus S.PARENT =
EMPTY.

A statement sequence is a finite list of statements S1, ..., Sn.

Statements annotated with ASSUMED will be used to make assumptions in the fol-
lowing. Statements BYCONTEXT are those which require actual proof work. BYSUB-
CONTEXT is a special case of this if we want to exclude preceding lemmas from proof
work. A proof BYSEQUENCE and BYSPLIT is both by a sequence. However, the in-
terpretation is different: BYSEQUENCE is indeed an hierarchical sequence. BYSPLIT

meanwhile splits the goal into several sub-goals with distinct contexts. This allows

22 Chapter 4. The ELFE language

a finer scoping of statements as we will see in Section 4.2.2.

P → (R ∨ ∼ Q) ASSUMED

def

∼ Q→ R ASSUMED

prop

P → R

lemma

P ASSUMED

assumeP

R

followR

Q→ R

case1

∼ (Q→ R) ASSUMED

assumeContrary

∼ (R∨ ∼ Q) BYCON.
unfold

⊥ BYCONTEXT

followC

∼ Q→ R

case2

∼ Q ASSUMED

assumeNotQ

R BYSUBCON. prop
followR2

FIGURE 4.1: Exemplary statement sequence

We can illustrate a statement sequence as a sequence of boxes. Consider Figure 4.1.
On the top level, we have 3 statements. Their IDs def, prop and lemma are repre-
sented in the left upper corner as a label. The GOAL is displayed in the first line
of a box. The PROOFs of def and prop are ASSUMED, we write this kind of proof
directly after the goal. In our example, these statements express some relations be-
tween propositional atoms P , Q and R.

From these two statements we want to derive the goal of lemma, P → R. The proof
consists of the sequence assumeP and followR. We write proofs BYSEQUENCE below
the goal of the statement. The statement assumeP is again just ASSUMED, whereas
followR is proved BYSPLIT. We represent this by putting the corresponding state-
ments case1 and case2 side by side beneath the goal. Both cases combined prove R.
Since we have assumed P in assumeP, this proves P → R.

The cases are proved separately BYSEQUENCE. The proof of case1 is BYSEQUENCE,
more exactly by contradiction: We assume the converse of the goal, make a transfor-
mation and derive ⊥. In other words: We show that the converse of the goal leads
to an inconsistency. unfold and followC are annotated with BYCONTEXT – these are
the statements that actually require proof work. We will see in the following that
their proof work will be given to background provers. Depending on their result,
we will consider the statements correct.

The proof of case1 is straightforward: We assume the left hand side of the goal and
show that the right hand side follows. The statement folowR2 is annotated with BY-
SUBCONTEXT prop – this means its goal will also be given to background provers.

4.2. Verifying statement sequences 23

However, the context will be limited to the statement prop. This gives the user the
possibility to select the premises from which a statement follows. We will define this
more exactly in Definition 4.4.

This gives us an intuition for the internal data structure used to represent mathe-
matical texts. Next, we will define correctness of sequences in the following Section
4.2. This gives us a framework to define what sensible statements should look like
in Section 4.3.

4.2 Verifying statement sequences

We already introduced the notion of a PROOF for a statement. We will now define a
criteria for correctness of statements. This is a rather weak criterion that still allows
for meaningless proofs. We will see in the next Section 4.3 in which way proofs need
to be constructed such that they are meaningful.

4.2.1 Prover tasks

To verify statement sequences, we need to check if certain formulas imply another
formula. In other words: A conjecture needs to follow from a set of axioms. We will
use the notion of proof tasks in the following. See Section 6.2 for a discussion of the
implementation of the background proving.

Definition 4.2. Proof task.
A proof task consists of a set of axioms, the theory Γ, and a goal formula φ. We want
to check if Γ � φ, i.e., evaluate the function verify as follows:

verify(Γ, φ) =

CORRECT if an ATP finds a proof for Γ � ψ

INCORRECT if an ATP finds a proof for Γ � ∼ ψ
UNKNOWN if no ATP could find a derivation for either kind

4.2.2 Correctness of statement sequences

Let us now define which formulas are relevant to prove a conjecture, i.e., what the
context Γ is. Intuitively, we consider all statements before and above this formula as
the context. Formally:

Definition 4.3. Context
In a sequence of statements S1, ...Sn, the context of a statement Sk is inductively
defined as

• Γ(EMPTY) = ∅,
• Γ(Sk) = {S1.GOAL, ..., Sk−1.GOAL} ∪ Γ(Sk.PARENT).

Going back to our example in Figure 4.1, the statement unfold consists of
assumeContrary, assumeP, def and prop. The formulas of case1, followR and lemma
are those that need to be proven and thus will not be included in the context.

In the context of statement assumeNotQ, we will not consider the derived statements
in case1 and have only the context assumeP, def and prop. This represents scoping of

24 Chapter 4. The ELFE language

statements: In a hierarchical proof, we will consider some statements only in certain
cases or sub proofs.

In order to define correctness for statements that are proved BYSUBCONTEXT, we
need to introduce restricted contexts. Intuitively, a restricted context matches all
statements on the top level against a white list. Statements on intermediate levels
are always included. This allows the user to do manual premise selection.

Definition 4.4. Restricted Context
In a sequence of statements S1, ...Sn, the restricted context of a statement Sk is de-
fined as

Γ(Sk)Id1,...,Idm =

{
∅ if Γ(Sk).PARENT = EMPTY and Γ(Sk).ID /∈ {Id1, ..., Idm}
{S1.GOAL, ..., Sk−1.GOAL} ∪ Γ(Sk.PARENT)Id1,...,Idm otherwise

Going back to our example in Figure 4.1, the statement followR2 was annotated
with BYSUBCONTEXT prop. The intermediate levels will be considered normally, i.e.,
assumeNotQ and assumeP will be included in the context. On the top level, only the
explicitly stated statements will be included. Thus, prop will be included whereas
def will be ignored.

Equipped with this, we can define correctness of statements and statement sequences.
We will consider statements ANNOTATED as correct, the correctness of BYCONTEXT

and BYSUBCONTEXT is checked by background provers and the correctness of state-
ments annotated with BYSEQUENCE and BYSPLIT depend on the correctness of their
children.

Definition 4.5. Correct statement.
We define correctness of a statement S on the structure of its proof:

• S.PROOF = ASSUMED:
S is correct

• S.PROOF = BYCONTEXT:
S is correct iff verify(Γ(S), S.GOAL) = CORRECT

• S.PROOF = BYSUBCONTEXT Id1, ..., Idn:
S is correct iff verify(Γ(S)Id1,...,Idn , S.GOAL) = CORRECT

• S.PROOF = BYSEQUENCE S1, ..., Sn:
S is correct iff S1, ..., Sn is correct

• S.PROOF = BYSPLIT S1, ..., Sn :
S is correct iff S1, ..., Sn is correct

A statement sequence S1, ..., Sn is called correct iff Si is correct for all i = 1, ..., n.

If we go back to our example in Figure 4.1, we will check the correctness of unfold by
sending the task verify({∼ (Q → R), P, P → (R ∨ ∼ Q),∼ Q → R},∼ (R ∨ ∼ Q))
to the background provers. Since this follows directly from the previous statement,
the background provers will succeed in finding a derivation. To check the correct-
ness of followR, the correctness of case1 and case2 are taken into account.

4.3. Proving with statement sequences 25

We can produce arbitrary correct statements by annotating them with ASSUMED. In
the following, we want to construct a narrower definition in order to characterize
correct proofs. As we will see, the construction of statement sequences give us a big
enough framework to represent and verify complex mathematical texts.

4.3 Proving with statement sequences

So far, statement sequences do not give us meaningful way to produce a more com-
plex proof for a statement. For example, a statement which is annotated with BY-
SEQUENCE can have arbitrary statements as children. In the following, we will give
a narrower definition of proved statements. This reflects that a proof should not
make additional assumptions but follow all steps from the context. We will use the
previously introduced Definition 4.3 and Definition 4.4 for contexts and restricted
contexts. With that, we can produce meaningful derivations.

4.3.1 Proved statements

Let us first define the concept of a theory, which describes the closure of a set of
formulas under semantical consequence. In other words: All formulas that already
follow from a set of formulas.

Definition 4.6. Theory.
Let Γ be a set of formulas in first-order logic. Then the theory created by Γ is

Th(Γ) = {φ | Γ � φ}

Now we can introduce proved statements. These are the statements that already
follow from a context and thus do not extend the theory.

Definition 4.7. Proved statement.
Let S be a statement with S.GOAL = φ. We call S proved iff φ ∈ Th(Γ(S)).

We will denote proved statements bold S in the following.

Statements annotated with ASSUMED are in general not proved – they are the axioms
of our theories. Statements that are annotated BYCONTEXT and BYSUBCONTEXT

and have been verified obviously are proved as we see in the following two lemmas.

Lemma 4.1.
Let S be a statement such that S.GOAL = P , S.PROOF = BYCONTEXT and S is correct.
Then S is proved.

Proof. Since S is correct, the background provers found a proof for Γ(S) � P . Thus,
P ∈ Th(Γ(S))

Lemma 4.2.
Let S be a statement such that S.GOAL = P , S.PROOF = BYSUBCONTEXT Id1, ..., Idn
and S is correct. Then S is proved.

26 Chapter 4. The ELFE language

Proof. Since S is correct, the background provers found a proof for Γ(S)Id1,...,Idn � P .
Since ΓId1,...,Idn ⊆ Γ, we have in particular Γ � P . Thus, P ∈ Th(Γ(S))

Our proofs will get more complex. At first, we will give an overview of the ELFE

language. Then, we will give several ways to prove statements. We will use the
definition of proved statements in order to construct sound proofs, i.e., proofs that
do not extend the theory. This allows us to produce proved statements annotated
with BYSEQUENCE and BYSPLIT.

4.4 Overview of the ELFE language

So far we only talked about internal data structures. Now we introduce the actual
ELFE language. The language is pseudo-natural and tries to model how mathemati-
cians write proofs. We present different language constructs and their conversion
into statement sequences. We did not define semantics for the language yet and will
introduce the language on an exemplary basis.

Let us take a look at the language at the top level. An ELFE text consists of a sequence
of commands:

〈text〉 ::= 〈command〉*

〈command〉 ::= 〈section〉
| 〈let〉
| 〈include〉
| 〈notation〉

To define our grammar, we will use this kind of grammar definition in the follow-
ing. Terminal symbols are denoted in sans-serif with single quotes like ’this’. Non-
terminals are denoted like <this>. Optional non-terminals are denoted with <t>?,
multiple non-terminals with <t>∗. Multiple non-terminals separated by a comma
will be denoted like this: <t>, ..., <t>.

A <section> is a command that introduces statements into the resulting statement
sequence. We will take a look at these in Section 4.4.2. We introduce several tactics
to prove a statement in Section 4.5. The commands <let> and <include> are meta-
language features and will be dealt with in Section 4.6.1 and Section 4.6.2. But first,
we will take a closer look at the internal representation of formulas in Section 4.4.1.
There we will also learn about the <notation> command which provides a way to
write more intuitive predicates.

4.4.1 Formulas

ELFE uses first-order predicate logic to represent mathematics.

〈formula〉 ::= ’(’〈formula〉’)’
| 〈forall〉
| 〈exists〉
| 〈formula〉 ’iff’ 〈formula〉
| 〈formula〉 ’implies’ 〈formula〉

4.4. Overview of the ELFE language 27

| 〈formula〉 ’and’ 〈formula〉
| 〈formula〉 ’or’ 〈formula〉
| ’contradiction’
| ’not’ 〈formula〉
| 〈atom〉

〈atom〉 ::= 〈id〉’(’〈term〉, ..., 〈term〉’)’
| 〈var〉 ’is’ 〈id〉, ... , 〈id〉
| 〈var〉 ’is not’ 〈id〉, ... , 〈id〉
| 〈sugar〉

〈term〉 ::= 〈id〉’(’〈term〉, ..., 〈term〉’)’
| 〈var〉

〈var〉 ::= 〈id〉

〈id〉 ::= 〈alphaNumeric〉*〈singleQuotationMark〉*

The definition of <formula> is equivalent to the classical representation of first-order
logic, consider the following exemplary conversion from our language to first-order
logic:

’P(x) implies contradiction’ ↪−→ P (x)→ ⊥

The first option of writing an <atom> is also close to the classical notation. With
terms being either variables or terms itself, it is possible nest formulas into pred-
icates, e.g., ’subset(union(A,B),C)’. The second and third option for writing atoms
models predicate assignment in a more natural way, e.g., one can write ’R is relation’
for relation(R) and ’R is not relation’ for ¬relation(R). The last option allows to
write infix atoms with special characters. We will introduce this sugaring in Section
4.4.1.

The precedence follows the intuitive notation: The strongest precedence has ’not’,
then ’or’ and ’and’, afterwards ’implies’, then ’iff’ and finally the quantifiers <forall>
and <exists>. It is always possible to introduce parentheses to group logical connec-
tives or to make a statement more readable.

The definition of <id> is used in ELFE whenever a token is required. E.g., predicates
and variables are allowed to be an alphanumeric string followed by arbitrary many
single quotes. E.g., ’x1’ is a valid variable and ’relapp(R,y,y’)’ is a valid atom.

In order to make quantifications more readable, we allow several ways to write
them:

〈forall〉 ::= ’for all’ 〈var〉. 〈formula〉
| ’for all’ 〈var〉, ... ,〈var〉. 〈formula〉
| ’for all’ 〈atom〉. 〈formula〉

〈exists〉 ::= ’exists’ 〈var〉. 〈formula〉
| ’exists’ 〈var〉, ... ,〈var〉. 〈formula〉
| ’exists’ 〈atom〉. 〈formula〉

28 Chapter 4. The ELFE language

The condensed form of a quantifier ’for all x,y,z’ can be used to omit several quan-
tifiers. Allowing atoms instead of variables is due to the convention that one often
says ’for all P(x). Q(x)’ instead of ’for all P(x). P(x) implies Q(x)’. Dual to that,
one says ’exists P(x). Q(x)’ instead of ’exists P(x). P(x) and Q(x)’. Therefore, the
conversion into first-order logic is as follows:

’for all P(x). Q(x)’ ↪−→ ∀x.P (x)→ Q(x)

’exists P(x). Q(x)’ ↪−→ ∃x.P (x) ∧Q(x)

Notations

Even though first-order logic allows to model some domains of mathematics quite
straightforward, its notation is sometimes not intuitive. The union of two sets A and
B is normally expressed as A ∪ B, and not by union(A,B). In order to allow infix
notations and special characters, one can use notations.

〈notation〉 ::= ’Notation’ 〈id〉: 〈sugar〉.

〈sugar〉 ::= 〈delimiter〉?(〈id〉〈delimiter〉)*〈id〉?

〈delimiter〉 ::= 〈specialCharacter〉*

The <notation> command allows to introduce a new syntactic sugar. At first, an
<id> is given. This will be used as the predicate name after converting a sugar.
The sugar itself is an alternating sequence of placeholders, which follow the already
given rules for a <id>, and special characters, which model the characteristics of that
sugar. For example, ’R[x,y]’ is such a sugar. The tokens ’R’, ’x’ and ’y’ will be treated
as placeholders, whereas the other characters are treated as the characteristics of the
pattern. E.g., ’f[a,b]’ will be matched with the sugar since the brackets and comma
are in the same place and other terms are given at the appropriate places. It is in
particular possible to put another <atom> inside a sugar; consider the example in
Text 4.2.

Notation square: x2.
Notation union: A ∪ B.
Notation function : f : A -> B.
Proposition: f: (A ∪ B) -> B and f is injective implies f is surjective.
Proposition: x2 is positive.

TEXT 4.2: Using syntactic sugar

The propositions of Text 4.2 will be transformed into the following formulas:

(function(f, union(A,B), B) ∧ injective(f))⇒ surjective(f)

positive(squared(x))

4.4.2 Top level sections

Now that we have introduced the internal representation of formulas, we will see
how one can produce actual statements. On a top level, the following sections are
allowed:

4.5. Derivations 29

〈section〉 ::= ’Definition’ 〈id〉?: 〈formula〉.
| ’Proposition’ 〈id〉?: 〈formula〉.
| ’Lemma’ 〈id〉?: 〈formula〉. ’Proof:’ 〈derivation〉 ’qed.’

After the section marker the user may give an identifier to refer to this statement af-
terwards. After a colon he proceeds with a formula in our version of first-order logic.

The tokens ’Definition’ and ’Proposition’ are evaluated similarly: They allow users
to introduce statements without a proof, i.e., annotated with ASSUMED. We intro-
duced both sections to allow the user for more explanatory power: A ’Definition’
may be used to introduce new predicates, whereas a ’Proposition’ will derive simple
conjectures without a proof.

Consider Text 4.3. After introducing the predicate ’subset’, an additional proposition
is made about when sets are equal. These sections are both introduced as ASSUMED

statements in Figure 4.4. Then follows a ’Lemma’. These are sections that require a
’Proof’. We will see in the next Section 4.5 how a proof may look.

Definition subset: A ⊆ B iff for all x ∈ A. x ∈ B.

Proposition: A = B iff for all x. x ∈ A iff x ∈ B.

Lemma: A = B iff A ⊆ B and B ⊆ A.
Proof:

... .
qed.

TEXT 4.3: Example of top level sections

subset(A,B)↔ (∀x.x ∈ A→ x ∈ B) ASSUMED

S1

A = B ↔ (∀x.x ∈ A↔ x ∈ B) ASSUMED

S2

A = B ↔ subset(A,B) ∧ subset(B,A)

S3

...

FIGURE 4.4: Exemplary statement sequence for top level sections

4.5 Derivations

In order to prove a ’Lemma’, we want to show that it follows from the context – this
corresponds to a proven statement as introduced in Definition 4.7. ELFE allows for
several proving techniques:

• One or several sub proofs may be constructed which imply the original goal.

30 Chapter 4. The ELFE language

• According to the structure of the goal, a proof can be derived in the manner of
natural deduction. For example, if we want to prove a goal as P → Q, we may
assume P and derive Q from it.

• To give cornerstones to a proof, one can deduce additional statements which
add to the context. These cornerstones then guide the user and background
provers through the proof.

We will introduce several language constructs in the following that represent these
techniques and show that they indeed produce proved statements. However, we
cannot show completeness of the derivation system. Since the language features
were introduced on the basis of exemplary proofs, new proofs may require addi-
tional constructs and lie currently outside of the ELFE system.

Concretely, a derivation looks like this:

〈derivation〉 ::= 〈subproof 〉*
| 〈case〉*
| 〈fix〉
| 〈implies〉
| 〈take〉
| 〈then〉
| 〈finalGoal〉

The tokens <subproof> and <case> introduce ways to split a proof into sub proofs.
We will take a look at this in Section 4.5.1. In order to deduce a goal in the manner of
natural deduction, we can use the constructs <fix> and <implies>. We examine this
unfolding in Section 4.5.2. The constructs <take> and <then> denote ways to give
additional cornerstones to a proof. This is covered in Section 4.5.4.

4.5.1 Splitting a goal

In order to prove a goal, one will often split it up in several sub goals that are proved
separately. If the sub goals indeed imply the original goal, the original goal follows
from the context as well. This is reflected by the following lemma:

Lemma 4.3.
Let S be a statement such that S.GOAL = P , S.PROOF = BYSPLIT S0,S1, ...,Sn,
S0.GOAL = Q1 ∧ ... ∧Qn → P , Si.GOAL = Qi for i = 1, ..., n:

P

S

Q1 ∧ ... ∧Qn → P

S0

Q1

S1

... Qn

Sn

Then S is proved.

Proof. We have Γ(S) = Γ(Si) for i = 0, . . . , n. With Si proven for i = 1, . . . , n we
have Γ(S) � Qi for i = 1, . . . , n. With (∧I) it follows Γ(S) � Q1 ∧ · · · ∧Qn.
With S0 proven we also have Γ(S) � Q1 ∧ ... ∧ Qn → P . Thus, we can deduce with
(→ E) that Γ(S) � P and thus P ∈ Th(Γ(S)).

4.5. Derivations 31

There are two ways to construct such a statement within ELFE. Sub proofs are the
straightforward implementation. Cases provide a commonly used shortcut to do a
case distinction.

Sub proofs

〈subproof 〉 ::= ’Proof’ 〈formula〉: 〈derivation〉 ’qed.’

Consider the example in Text 4.5. A common method to show the equality of two
sets is to show that they are subsets of each other. If we defined sets appropriately,
the soundness of this proving method will follow from the background theory.

Lemma: A = B.
Proof:

Proof A ⊆ B:
... .

qed.
Proof B ⊆ A:

... .
qed.

qed.

TEXT 4.5: Example for sub proofs

This text will be transformed into the statement in Figure 4.6. The statement S will
be considered proved if S0, S1 and S2 can be proved. As we have seen in Lemma
4.3, this is sound.

A = B

S

(A ⊆ B) ∧ (B ⊆ A)→ (A = B)

S0

A ⊆ B
S1

B ⊆ A
S2

FIGURE 4.6: Conversion of sub proofs into statement

Note that this can also be used to prove goals in the manner of natural deduction:
If a goal is P ∨ Q, the user may just prove P . Consider the statement in Figure 4.7.
Since P → P ∨Q, this proof will be accepted.

P ∨Q

S

P → (P ∨Q)

S0

P

S1

FIGURE 4.7: Natural deduction with sub proofs

We will introduce more constructions to do proofs in the manner of natural deduc-
tion in Section 4.5.2.

32 Chapter 4. The ELFE language

Case distinctions

With case distinctions, we make different assumptions and derive the goal sepa-
rately from each assumption.

〈case〉 ::= ’Case’ 〈formula〉: 〈derivation〉 ’qed.’

A proof with a case distinction can be found in Text 4.12.

Lemma: for all x. squared(x) is positive.
Proof:

Case x is positive:
... .

qed.
Case x is negative:

... .
qed.

qed.

TEXT 4.8: Example for case distinctions

This will be transformed into the statement in Figure 4.9. Again, Lemma 4.3 shows
that this proves S if S0, S1 and S2 can be proved. This will only be the case if we
have corresponding premises previously in the text.

∀x.positive(squared(x))

S

(∀x.positive(x)→ positive(squared(x)))∧
(∀x.negative(x)→ positive(squared(x)))
→ ∀x.positive(squared(x))

S0

∀x.positive(x)→
positive(squared(x))

S1

∀x.negative(x)→
positive(squared(x))

S2

FIGURE 4.9: Exemplary case distinction as statement

4.5.2 Unfolding goals

In the following we will introduce further methods to do proofs in the style of nat-
ural deduction. E.g., if a user wants to prove a goal P → Q, he will often assume P
and follow Q from it.

Note that ELFE is not a complete natural deduction system and not all deduction
rules are implemented.

∀ introduction

If a user wants to prove an universally quantified statement, he will often fix a par-
ticular element and prove the goal for this element. Important is that no further
assumptions are made about this element. This corresponds to the following rule
with the constant a as the fixed element:

(∀I) :
P (a)

∀x.P (x)
with a not occurring in P (x)

4.5. Derivations 33

This natural deduction rule is implemented as follows:

Lemma 4.4.
Let S be a statement such that S.GOAL = ∀x.P (x) and a not occurring in S.GOAL,
S.PROOF = BYSEQUENCE S1, S1.GOAL = P (a):

∀x.P (x) (a not occurring)

S

P (a)

S1

Then S is proved.

Proof. Since S1 is proved and Γ(S) = Γ(S1), we have Γ(S) � P (a).
With (∀I) it follows that Γ(S) � ∀x.P (x) since a does not occur in P (x). Thus,
∀x.P (x) ∈ Th(Γ(S)).

This is implemented in ELFE with the ’Fix’ construction:

〈fix〉 ::= ’Fix’ 〈var〉. 〈derivation〉

Consider the following Text 4.10.

Lemma: for all x. squared(x) is positive.
Proof:

Fix x.
...

qed.

TEXT 4.10: Example for fixing an element

Text 4.10 will be transformed into the statement in Figure 4.11.

∀x.positive(squared(x))

S

positive(squared(a))

S1

FIGURE 4.11: Fixing an element as a statement

As we have seen in in Lemma 4.4, S is proved if S1 can be proved.

→ introduction

In order to prove a goal of the form P → Q, a user will often assume P and follow
Q from it. This corresponds to the natural deduction rule:

→ I :
P ` Q
P → Q

The equivalent to this rule in ELFE is as follows.

34 Chapter 4. The ELFE language

Lemma 4.5.
Let S be a statement such that S.GOAL = P ⇒ Q, S.PROOF = BYSEQUENCE S1,S2,
S1.GOAL = P , S2.GOAL = Q:

P → Q

S

P

S1

Q

S2

Then S is proved.

Proof. We have Γ(S2) = Γ(S) ∪ P . Since S2 is proven, Γ(S) ∪ P � Q. With (→ I) it
follows Γ(S) � P → Q. Thus, P → Q ∈ Th(Γ(S)).

Such a statement can be constructed in ELFE with this construction:

〈implies〉 ::= ’Assume’ 〈formula〉. 〈derivation〉 ’Hence’ 〈formula〉.

Notation minus: -x.

Lemma: for all x. x is positive implies -x is negative.
Proof:

Assume x is positive.
...

Hence -x is negative.
qed.

TEXT 4.12: Case distinctions with ELFE

Note that ELFE assumes newly introduced variables in an ’Assume’ statement to be
universally quantified but fixed. Thus, we can omit ’Fix x.’. Consider the resulting
statement in Figure 4.13. At first, x is fixed to a. Then, we unfold the implication.
If S3 can be proved, it follows with Lemma 4.5 that S1 is proved. Then, S is also
proved with Lemma 4.4.

∀x.positive(x)→ negative(minus(x))

S

positive(a)→ negative(minus(a))

S1

positive(a) ASSUMED

S2

negative(minus(a)

S3

FIGURE 4.13: Assume and hence as statement

4.5. Derivations 35

4.5.3 Inferring goals

The constructions presented in Section 4.5.2 can also be used for proving alternative
goals. The parser algorithm will check if the formulas after ’Assume’ and ’Hence’
match the goal formula. If so, the goal will be unfolded; if not, the parser algorithm
will construct the alternative goal and check if it indeed implies the original goal.
In the following we want to give an example of this inferring, see Section 6.1 for an
implementation of the algorithm.

Consider Text 4.14. In order to show that ’(AC)C’ is a subset of ’A’ (which is true in
the standard interpretation of sets since the sets are equal), a user will fix a particular
element in ’(AC)C’ and show that it is as well in ’A’. Note that we left out that ’A’ is a
set here to ease readability. You can find the complete proof in Appendix A.

Lemma: ((AC)C) ⊆ A.
Proof:

Assume x ∈ ((AC)C).
...
Hence x ∈ A.

qed.

TEXT 4.14: Inferring a goal

The system will discover that the user proves an alternative goal and constructs it
depending on the proof structure given by the user. This results in the statement
in Figure 4.15. The prover has to check if the alternative goal indeed implies the
original goal. This is the case if we defined ’C’ and ’⊆’ appropriately. With Lemma
4.3, this construction is sound.

subset(comp(comp(A)), A)

S

(∀x.in(x, comp(comp(A)))→ in(x,A))
→ subset(comp(comp(A)), A)

S1

∀x.in(x, comp(comp(A)))→ in(x,A)

S2

in(a, comp(comp(A)))→ in(a,A)

S3

in(a, comp(comp(A)))

S4

in(a,A)

S5

FIGURE 4.15: Inferring an alternative goal

Note that the same statement could be constructed by using sub proofs. The user
could explicitly state that he proves an alternative goal as in Text 4.16. However, the
implemented solution allows for shorter and more intuitive proofs. It is obvious to
a user that the definition of a subset allows for this proving method.

36 Chapter 4. The ELFE language

Lemma: ((AC)C) ⊆ A.
Proof:

Proof x ∈ (AC)C) implies x ∈ A:
...
qed.

qed.

TEXT 4.16: Explicitly proving an alternative goal

4.5.4 Extending the context

As a third option (besides splitting a goal into sub goals and proving it in the man-
ner of natural deduction), a user may want to give cornerstones to a proof without
changing the actual goal. This may help the background provers in finding a proof
for the final goal and make a proof more readable for a human. Formally, this is
expressed with the following lemma:

Lemma 4.6.
Let S be a statement such that S.GOAL =P , S.PROOF = BYSEQUENCE S1,S2, S1.GOAL

= Q, S2.GOAL = P :

P

S

Q

S1

P

S2

Then S is proved.

Proof. Since S1 is proved, we have Γ(S1) � Q. Because of Γ(S) = Γ(S1) already
Γ(S) � Q. Thus, Q does not extend Th(Γ(S)). Hence, with S2 proved we have
Γ(S2) � P and it follows that already Γ(S) � P .

This lemma can be used in ELFE by using ’Then’ or ’Take’:

〈then〉 ::= ’Then’ 〈formula〉 〈by〉?.

〈take〉 ::= ’Take’ 〈formula〉 〈by〉?.

〈by〉 ::= 〈id〉, ... , 〈id〉

’Then’ simply creates a new statement that is annotated BYCONTEXT and then added
to the context of the original goal. The token <by> gives the possibility to prove a
statement BYSUBCONTEXT by limiting the context to certain premises as seen in Def-
inition 4.4.

’Take’ corresponds to the following proof technique: If an element exists, it is fixed
and then used afterwards. However, no further assumptions can be made about
the fixed element. In the final conclusion, the element is not allowed to occur. This
corresponds to the following natural deduction rule:

4.5. Derivations 37

(∃E) :
∃x.Q(x) Q(a) ` P

P
P does not contain a

In ELFE, this rule can be used as an extension of Lemma 4.6:

Lemma 4.7.
Let S be a statement such that S.GOAL = P (a not occurring in P),
S.PROOF = BYSEQUENCE S1 S3,
S1.GOAL = Q(a), S1.PROOF = BYSEQUENCE S2,
S2.GOAL = ∃x.Q(x),
S3.GOAL = P :

P (a not occurring)

S

Q(a)

S1

∃x.Q(x)

S2

P

S3

Then S is proved.

Proof. Since Γ(S) = Γ(S2), we have Γ(S) � ∃x.Q(x). With Lemma 4.5, we also have
Q(a) ` P . Since a not occurring in P , it follows with (∃E) that Γ(S) � P and thus
P ∈ Th(Γ(S))

Consider the example in Text 4.17. A relation R which is transitive, symmetric and
bound (each element relates to at least another element), is in particular reflexive.
In order to prove this, we unfold the definition of reflexivity, i.e., fix a particular
element and show that the relation relates it to itself. In order to do this, we first fix
a particular x. Since R is bound, there is a y such that R[x, y]. With the symmetry of
R we know that R[y, x], the transitivity finally gives us R[x, x]. The complete proof
is in Appendix A.

Lemma: R is transitive, symmetric, bound implies R is reflexive.
Proof:

Proof for all x. R[x,x]:
Fix x.
Take y such that R[x,y].
Then R[y,x].
Then R[x,x].

qed.
qed.

TEXT 4.17: Giving cornerstones to a proof

This text will be transformed into the statement sequence in Figure 4.18. We omitted
the outer implication transitive(R) ∧ symmetric(R) ∧ bound(R) → reflexive(R) to
ease readability. The derivation of statement S reflects that we proved the alterna-
tive goal ∀x.relapp(R, x, x). It is checked in statement S1 whether this alternative

38 Chapter 4. The ELFE language

goal indeed implies the original, i.e., reflexivity needs to be defined adequately. The
statement S2 contains the actual derivation. First, we fix a particular element a in
statement S3. Thus, we only need to show that R[a, a] for this fixed a. To prove this,
we first retrieve the b that a is related to. We further extend the context with the fact
that then also R[b, a]. This finally leads us to R[a, a]. We will see how this final proof
obligation is treated in the next Section 4.5.5.

We can apply Lemma 4.7 since the constant b is not occurring in the goal of S3. Even
if we use it in S7 when proving relapp(R, b, a), the constant cannot be used outside
of S3.

reflexive(R)

S

(∀x.relapp(R, x, x))→ reflexive(R)

S1

∀x.relapp(R, x, x)

S2

relapp(R, a, a)

S3

relapp(R, a, b)

S4

∃y.relapp(R, a, y) BYCONTEXT

S5

relapp(R, a, a)

S6

relapp(R, b, a) BYCONTEXT

S7

relapp(R, a, a)

S8

FIGURE 4.18: Extending the context with cornerstones

4.5.5 Proving the final goal

If the user does not give any further derivation, the remaining goal is given to the
background provers by creating a statement annotated with BYCONTEXT. This is
sound with Lemma 4.1. This corresponds to the last rule of <derivation>:

〈finalGoal〉 ::= 〈emtpy〉

Going back to our example in Figure 4.18, the goal of S8 will be given to the back-
ground provers. If they find a proof for relapp(R, a, a), the whole proof will be ac-
cepted.

4.6 Meta level constructs

4.6.1 Let construction

In order to make ELFE texts more concise and readable, we introduced meta vari-
ables. In a longer text, one will often reuse the same variable for a certain object, e.g.,

4.6. Meta level constructs 39

A for a set. So far, it would be necessary to write in every statement ’for all A. A is
set implies ...’. The <let> construction allows to assign predicates to variables:

〈let〉 ::= ’Let’ 〈var〉 ’be’ 〈id〉, ..., 〈id〉.
| ’Let’ 〈var〉, ... , 〈var〉 ’be’ 〈id〉.
| ’Let’ 〈atom〉.

Whenever a variable introduced with <let> is used in a following statement, we will
universally quantify it and assume it has the specified predicate. Consider Text 4.19
which makes a statement about symmetric relations. This text is equivalent to the
verbose version in Text 4.20.

Let R be relation.
Definition symmetry: R is symmetric iff for all x,y. R[x,y] implies R[y,x].

TEXT 4.19: Example for let construction

Definition symmetry: for all R. relation(R) implies (R is symmetric iff for all x,y.
R[x,y] implies R[y,x]).

TEXT 4.20: Text without meta variables

Note that if a lemma contains a meta variable, we automatically fix and assume it in
the proving sequence. E.g., if we extend Text 4.19 by a lemma containing the variable
’R’, it is not necessary to write ’Fix R. Assume R is relation. ...’ in the proof.

4.6.2 Inclusions

In order to modularize and reuse mathematical texts, we introduced the <include>
command. The parser looks in the library sub folder of the project for a correspond-
ing .elfe file and inserts it into the original text.

〈include〉 ::= ’Include’ 〈library〉.

〈library〉 ::= ’relations’ | ’sets’ | ’functions’

Currently, these three libraries have been created. The user can add more by putting
.elfe files in the library sub folder.

Include relations.

TEXT 4.21: Example for using the library

The scope of meta variables introduced with ’Let’ are limited to each file. This is
so that the user does not have to remember all meta variables used in background
libraries. Syntax sugars introduced with ’Notation’ have a global scope since these
are often crucial bits of the formalized library.

41

Chapter 5

The ELFE system

We recall that a main objective of this work was to develop an interactive proving
system that has a low entry barrier. In order to this, a library was developed for
basic domains of mathematics which is introduced in Section 5.1. Afterwards, we
will take a look at the command line interface of the system in Section 5.2 and of the
web interface in Section 5.3.

5.1 Library

Formalizing different areas in first-order logic is not always straightforward. For ex-
ample, functions and relations need to be defined indirectly since we cannot quan-
tify over predicates and functions. However, with adequate predicates and by using
syntactic sugaring we can prepare libraries that make proving within these domains
intuitive. In the following, we will present a library created for proving lemmas
about relations in Section 5.1.1, sets in Section 5.1.2 and functions in Section 5.1.3.

5.1.1 Relations

We define relations not directly by using predicates – otherwise we need second or-
der features to state properties of relations. Instead, we use the predicate ’relapp’
which has the relation as the first argument followed by its elements. It holds if the
relation contains the tuple of the elements. Afterwards, we introduce basic proper-
ties of binary relations such as symmetry and transitivity. Additionally, we introduce
the inverse and complement of a relation as well as basic operations on relations such
as the union and intersection of two relations.

42 Chapter 5. The ELFE system

Notation relapp: R[x,y].

Let R,S be relation.

Definition nonempty: R is nonempty iff exists x,y. R[x,y].
Definition empty: R is empty iff not R is nonempty.
Definition symmetry: R is symmetric iff for all x,y. R[x,y] implies R[y,x].
Definition total: R is total iff for all x,y. R[x,y] or R[y,x].
Definition boundness: R is bound iff for all x. exists y. R[x,y].
Definition transitivity: R is transitive iff for all x,y,z. R[x,y] and R[y,z] implies R[x,z].
Definition reflexivity: R is reflexive iff for all x. R[x,x].

Definition equality: R = S iff (for all x,y. R[x,y] iff S[x,y]).

Notation subrelation: R ⊆ S.
Definition subrelation: R ⊆ S iff for all x,y. R[x,y] implies S[x,y].

Notation inverse: R-1.
Definition relationInverse: R-1 is relation and for all x,y. (R-1)[y,x] iff R[x,y].

Notation comp: RC.
Definition relationComplement: RC is relation and for all x,y. (RC)[x,y] iff not R[x,y].

Notation relunion: R ∪ S.
Definition relationUnion: R ∪ S is relation and

for all x,y. (R ∪ S)[x,y] iff R[x,y] or S[x,y].

Notation reint: R ∩ S.
Definition relationIntersection: R ∩ S is relation and

for all x,y. (R ∩ S)[x,y] iff R[x,y] and S[x,y].

TEXT 5.1: The relations library

With the library we can write simple proofs for relations, see Text 5.2 for an exem-
plary proof. The fact that the union of a relation and its inverse ’R ∪ (R-1)’ is sym-
metric follows directly from the definition of an inverse relation. In this example, we
make a more extensive derivation: If we take an arbitrary tuple in ’R ∪ (R-1)’, we
show by case analysis that also the reversed tuple is in ’R ∪ (R-1)’.

5.1. Library 43

Include relations.

Let R be relation.

Lemma: R ∪ (R-1) is symmetric.
Proof:

Assume (R ∪ (R-1))[x,y].
Then R[x,y] or (R-1)[x,y].
Case R[x,y]:

Then (R-1)[y,x].
qed.
Case (R-1)[x,y]:

Then R[y,x].
qed.
Hence (R ∪ (R-1))[y,x].

qed.

TEXT 5.2: Example for using the relations library

5.1.2 Sets

Defining sets in first-order logic is straightforward. The definitions of ’subset’, ’union’,
’intersection’ and ’complement’ are direct realizations of the normal definitions in Sec-
tion 2.4.2. The proposition ’subsetEquality’ follows directly from the context, how-
ever, we manually state it to give a shortcut for proof search of the background
provers.

Let A,B be set.

Notation in: a ∈ A.

Definition equality: A = B iff for all x. x ∈ A iff x ∈ B.

Definition nonempty: A is nonempty iff exists x. x ∈ A.
Definition empty: A is empty iff A is not nonempty.

Notation subset: A ⊆ B.
Definition subset: A ⊆ B iff for all x ∈ A. x ∈ B.

Proposition subsetEquality: A = B iff A ⊆ B and B ⊆ A.

Notation union: A ∪ B.
Definition union: A ∪ B is set and for all x. x ∈ (A ∪ B) iff x ∈ A or x ∈ B.

Notation intersection: A ∩ B.
Definition intersection: A ∩ B is set and for all x. x ∈ (A ∩ B) iff x ∈ A and x ∈ B.

Notation comp: AC.
Definition comp: AC is set and for all x. x ∈ (AC) iff not x ∈ A.

Notation powerset: A℘.
Definition powerset: A℘ is set and B ∈ (A℘) iff B ⊆ A.

TEXT 5.3: The sets library

44 Chapter 5. The ELFE system

With this we can make basic proofs about sets such as the proof in Text 5.4. The
complement of an union of two sets is equal to the intersection of the complements
of each set. One can comprehend this directly with a Venn diagram. Formally, the
proof can be done via the logical definitions of sets. This underlines the strong cor-
respondence between set theory and first-order logic.

Include sets.

Let A,B be set.

Lemma: ((A ∪ B)C) = ((AC) ∩ (BC)).
Proof:

Proof ((A ∪ B)C) ⊆ ((AC) ∩ (BC)):
Assume x ∈ ((A ∪ B)C).
Then not x ∈ (A ∪ B).
Then not x ∈ A and not x ∈ B.
Then x ∈ (AC) and x ∈ (BC).
Hence x ∈ ((AC) ∩ (BC)).

qed.
Proof ((AC) ∩ (BC)) ⊆ ((A ∪ B)C):

Assume x ∈ ((AC) ∩ (BC)).
Then x ∈ (AC) and x ∈ (BC).
Then not x ∈ A and not x ∈ B.
Then not x ∈ (A ∪ B).
Hence x ∈ ((A ∪ B)C).

qed.
qed.

TEXT 5.4: Example for using the set library

5.1.3 Functions

To define functions, we interpret them as relations: A function f : A → B is a bi-
nary relation which relates every element of A to exactly one element of B. The
first conjunction of the ’function’ definition in Text 5.5 expresses the totality criteria,
the second conjunction the uniqueness. As an additional premise we propose that a
function maps two equal elements to the same element in ’functionClosure’. This al-
ready follows from the definition of functions since an element of A maps to exactly
one element of B. However, adding this conclusion simplifies proof search for the
background provers.

We introduce the additional function ’funApp(f,x)’ which represents the element that
’f’ maps ’x’ on. As a syntactic sugar we use curly brackets to underline that these
functions in the text are distinct from functions of first-order logic. With ’funApp’
we create the proposition ’funEqualitiy’ which allows for directly writing ’(f{x}) =
(f{y}’).

The definitions of ’injective’, ’surjective’ and ’bijective’ functions as well as the inverse
function are straightforward realizations of Section 2.4.3.

5.1. Library 45

In order to define function composition, we introduce the notation ’g◦f’. The def-
inition then states that a composition of two functions is also a function and the
transitive mapping of it. However, we need to introduce the additional proposi-
tion ’compositionClosure’ which does not follow from the context. The proposition
expresses that f(x) = f(y) implies that also g(f(x)) = g(f(y)). Since we are work-
ing with first-order logic, we cannot retrieve the objects created by f(x) respectively
f(y) (the proposition derived in ’funEquality’ just expresses equality of two objects
and does not require the actual objects). Thus, we cannot apply function g to f(x)
(respectively f(y)) and need this additional proposition.

46 Chapter 5. The ELFE system

Include sets.
Include relations.

Let A,B,C be set.

Notation function: f: A -> B.

Definition function: for all f.
f: A -> B iff for all x ∈ A. exists y ∈ B.

relapp(f,x,y) and
(for all y2 ∈ B. y = y2 or not relapp(f,x,y2)).

Let f: A -> B.

Proposition functionClosure:
for all x1 ∈ A. for all x2 ∈ A. x1 = x2 implies exists y ∈ B. f[x1,y] and f[x2,y].

Definition injective: f is injective iff
for all x1 ∈ A. for all x2 ∈ A. for all y ∈ B. f[x1,y] and f[x2,y] implies x1 = x2.

Definition surjective: f is surjective iff
for all y ∈ B. exists x ∈ A. f[x,y].

Definition bijective: f is bijective iff f is injective and f is surjective.

Notation inverse: f-1.
Definition inverse: (f-1): B -> A and

(for all x ∈ A. for all y ∈ B. f[x,y] implies (f-1)[y,x]).

Let I be set.
Let i: I -> I.

Definition identity: i is identity iff for all x ∈ I. i[x,x].

Notation funApp: f{x}.
Proposition funEquality: for all x1 ∈ A. for all x2 ∈ A. (f{x1}) = (f{x2})

iff exists y ∈ B. (f[x1,y] and f[x2,y]).

Let g: B -> C.

Notation composition: g◦f.
Definition composition: (g◦f): A -> C and

(for all x ∈ A. for all y ∈ B. for all z ∈ C.
((f[x,y] and g[y,z]) implies (g◦f)[x,z])).

Proposition compositionClosure:
for all c ∈ A. for all d ∈ A. for all e ∈ B. f[c,e] and f[d,e] implies

exists m ∈ C. (g◦f)[c,m] and (g◦f)[d,m].

TEXT 5.5: The functions library

Since first-order logic has limited capabilities for talking about functions, the func-
tions library is not always intuitive. However, given the discussed propositions and
sugars, some proofs about functions can be done quite straightforwardly. Consider
Text 5.6 which proofs that if a composition of two functions is injective, in partic-
ular the firstly applied function is injective. First, we unfold the implication of the
lemma. Then we use the definition of injectivity to prove an additional implication:

5.2. Command line interface 47

f(x) = f(x′)→ x = x′. This can be proven by the fact that the composition is already
injective.

Include functions.

Let A,B,C be set.

Let f: A -> B.
Let g: B -> C.

Lemma: g◦f is injective implies f is injective.
Proof:

Assume g◦f is injective.
Assume x1 ∈ A and x2 ∈ A and (f{x1}) = (f{x2}).
Then ((g◦f){x1}) = ((g◦f){x2}).
Hence x1 = x2.
Hence f is injective.

qed.

TEXT 5.6: Example of proof with functions library

5.2 Command line interface

ELFE can be used directly from the command line. The user either may give the text
to verify via the standard input stream or a file containing the text as a command
line argument:

./elfe theorem.elfe
cat theorem.elfe | ./elfe

Consider the example in Text 5.7 which makes a trans observation about the transi-
tivity of equality.

Let A,B,C be element.

Lemma trans: A = B and B = C implies A = C.
Proof:

Assume A = B and B = C.
Hence A = C.

qed.

TEXT 5.7: Simple ELFE text

After executing elfe, the program runs through two stages as we see in Figure 5.8:
First, the text is parsed. The constructed statement sequence is presented to the user.
If the user gave an identifier, this is used as the identifier of the statement. Other-
wise, an incrementing identifier is assigned.

Afterwards, the correctness check of the statement sequence is shown to the user. In
order to check a statement annotated with BYSEQUENCE, all children are considered.

48 Chapter 5. The ELFE system

ASSUMED statements are just added to the context. The statement that actually re-
quires proof work is passed to the background provers. In this example, E PROVER

was the first to prove the conjecture. Note that all variables are prefixed with c. This
is due to the fact that we prove universally quantified statements by fixing an arbi-
trary element, i.e., proving it for a constant instead of a variable. Thus, A, B and C are
fixed constants.

Afterwards, the overall result of the verification is given to the user. Only if all state-
ments are correct, the result is CORRECT. The program concludes with some bench-
marking statistics.

---------------------------PARSING--------------------------
trans: ! [VA] : ((element(VA)) => (! [VB] : ((element(VB))

=> (! [VC] : ((element(VC)) => (((VA=VB) & (VB=VC)) =>
(VA=VC))))))) -- Prove by sequence:

| s1: (element(cA)) & ((element(cB)) & (element(cC))) -- Assumed
| s2: (cA=cB) & (cB=cC) -- Assumed
| s3: cA=cC -- ByContext
--------------------------VERIFYING-------------------------
Check trans: ! [VA] : ((element(VA)) => (! [VB] :

((element(VB)) => (! [VC] : ((element(VC)) => (((VA=VB)
& (VB=VC)) => (VA=VC)))))))

Assume s1: (element(cA)) & ((element(cB)) & (element(cC)))
Assume s2: (cA=cB) & (cB=cC)
Prove s3: cA=cC
PROVED by E Prover
---------------------------RESULT---------------------------
CORRECT
-------------------------STATISTICS-------------------------
Parsing time: 908.7 µs
Verifying time: 20.88 ms
Total: 21.79 ms

FIGURE 5.8: Exemplary run of ./elfe

5.3 Web interface

The ELFE system can also be accessed via a web interface. As we see in Figure 5.9,
a user can enter a proof in a text area. Above the text area are buttons to enter spe-
cial characters used in the background libraries. Below the text area is a field for
returning status information of the proof. This field will be filled after initiating the
verification process with a click on "VERIFY".

5.3. Web interface 49

FIGURE 5.9: The web interface of ELFE

If the user made a syntax error as in Figure 5.10, the exact line and column of the
error is prompted. Since we expect that the user wants to close the outer implication,
we can suggest that he uses the correct language construct ’Hence’.

FIGURE 5.10: Parsing error

50 Chapter 5. The ELFE system

If the user made a wrong derivation, the system returns a countermodel if possible.
In this example, BEAGLE found a countermodel for the derivation step made in line
9. Note that all variables in the countermodel are prefixed with c since we unfolded
the universal quantifications and we see the raw forms of the predicates without any
syntax sugaring.

BEAGLE suggests that there are relations R and S that meet the requirements of the
lemma. Also, there are x and y that are in R ∪ (R-1) and particularly in R-1, but not
in R. This indicates that we misunderstood the union of relations: If a tuple is in the
union of two relations, it is not necessarily in both relations.

FIGURE 5.11: Countermodel for wrong proof

We can correct the mistake in the previous proof by making a case distinction as
demonstrated in Figure 5.12. The text is now completely verified. By putting the
cursor in different lines, we can inspect the internal representations of the formulas,
e.g., in line 10 we can see the goal of the case distinction.

5.3. Web interface 51

FIGURE 5.12: A verified proof

53

Chapter 6

Implementation of ELFE

The full implementation of ELFE consists of over 1000 lines of Haskell code and can
be found online [1]. In the following we only want to take a look at crucial algo-
rithms of the system.

We will use a notation close to the Haskell programming language. Cryptic function
names will be replaced with more intuitive ones. We represent lists comma sepa-
rated l1, ..., ln and the empty list as ∅. A tuple of two elements x, y (respectively two
types A,B) is denoted x× y (respectively A × B). Functions are annotated with their
types where [A] is the type list of A. We also use the do notation which is syntactic
sugar for programming with monads. The reader does not need further knowledge
about monads except that parts enclosed by do are evaluated sequentially and the
keyword <- assigns a value to a variable.

6.1 Parsing derivations

The parser is the largest part of the source code since all language constructs need
to be parsed and the parser state administered. Most of it is straightforward, we
will only take a look at the part that creates a proof for a lemma. The algorithm
implements the language definition in Section 4.5. We omit the parts that create the
abstract syntax tree (in particular language markers such as ’Proof:’, ’Assume’, ’qed.’
etc.) and focus on the structure of the algorithm.

The function derivation is very close to the language definition of <derivation>. All
possible proving methods are tried to be applied successively. This is expressed by
the choice function <|>. The formula to be proven will be referred as φ in the follow-
ing, cn are currently fixed variables, i.e., variables that are considered as constants.
For example, to prove an universally quantified goal, a fixed but arbitrary element
will be chosen in unfold. The user will call it the same element in his proof, but we
need to tell the background provers that it is a constant. Thus, we keep track of fixed
variables.

derive :: Formula -> [Variable] -> [Statement]
derive φ cn = subproofs φ cn

<|> cases φ cn
<|> unfold φ cn
<|> infer φ cn
<|> extendContext φ cn
<|> finalProof φ cn

54 Chapter 6. Implementation of ELFE

The function subproofs constructs sub proofs as introduced in Section 4.5.1. First,
the different sub goals and their proofs are saved in S1, ..., Sn. This is done with the
function proof. The call of formula corresponds to parsing the sub goal specified by
the user. Then, proof recursively calls derive for the sub goal.

Back in subproofs, the statement S0 contains the soundness criteria, i.e., checks if the
sub goals indeed imply the original goal. The function vars2Cons replaces all fixed
variables given in cn with constants.

subproofs :: Formula -> [Variable] -> [Statement]
subproofs φ cn = do

S1, ..., Sn <- many (proof cn)
S0 <- Statement (vars2Cons (

∧
S1, ..., Sn → φ) cn) ByContext

return Statement φ (BySplit S0, ..., Sn)

proof :: [Variable] -> Statement
proof cn = do

ψ <- formula
S0, ..., Sn <- derive ψ
return Statement ψ (BySequence S0, ..., Sn)

To prove a formula in the manner of natural deduction as in Section 4.5.2, the func-
tion unfold performs pattern matching on the structure of the goal. A quantified
formula may be derived for a fixed constant instead of a variable. Thus, the variable
x is added to cn as discussed above. Analogous to that, unfolding of an implication
results in assuming the left hand side and deriving the right hand side of the im-
plication. The unfoldings are of course only applied if the user gives the language
markers ’Fix’ respectively ’Assume’ and ’Hence’, we omit the markers here for read-
ability.

unfold :: Formula -> [Variable] -> [Statement]
unfold (∀x.ψ) cn = derive ψ (cn, x)
unfold (ψ → ψ′) cn = do

S1 <- Statement (vars2Cons ψ cn) Assumed
S2, ..., Sn <- derive ψ′ cn
return S1, ..., Sn

In order to infer if a user proves an alternative goal as introduced in Section 4.5.3, the
infer function tries to build the derived formula ψ. The function lookAhead prevents
the parser from actually consuming any input. In particular, inferImplies parses the
given derivation in order to get to the conclusion of the assumption. The derivation
is discarded, so that it can be built again by calling derive in infer and saving the
derivation in S2, ..., Sn. The statement S0 checks soundness of the alternative goal,
i.e., if the alternative goal ψ indeed implies the original goal φ.

6.1. Parsing derivations 55

infer :: Formula -> [Variable] -> [Statement]
infer φ cn = do

ψ <- lookAhead (inferImplies cn)
S2, ..., Sn <- derive ψ cn
S1 <- Statement (vars2Cons ψ cn) (BySequence S2, ..., Sn)
S0 <- Statement (vars2Cons (ψ → φ) cn ByContext)
return Statement φ (BySplit S0, S1)

inferImplies :: [Variable] -> Formula
inferImplies cn = do

ψ <- fof
_ <- derive Top cn
ψ′ <- fof
return ψ → ψ′

As a last proving method, the user may extend the context by giving cornerstones
to a proof as introduced in Section 4.5.4. Accordingly, the function extendContext
calls then and take and adds their statements in the context of the actual derivation.
Both functions return a tuple of a statement S0 and constants c′n. This is due to the
fact that take fixes a variable x. Thus, it needs to be added to c′n in the following
derivation of ψ. Note that outside of the derivation, x is not fixed. Thus, take is a
sound implementation of Lemma 4.7.

The function then simply creates a statement that is checked by the background
provers. We omitted the implementation of <by> here to ease readability.

extendContext :: Formula -> [Variable] -> [Statement]
extendContext φ cn = do

S0 × c′n <- then cn <|> take cn
S1, ...Sn <- derive φ c′n
return Statement (vars2Cons φ cn) (BySequence (S0, ...Sn))

take :: [Variable] -> Statement × [Variable]
take cn = do

x <- variable
ψ <- formula
S1 <- Statement (∃x.(vars2Cons ψ cn)) ByContext)
return (Statement (vars2Cons ψ (cn, x)) (BySequence S1) × x, cn)

then :: [Variable] -> Statement × [Variable]
then cn = do

ψ <- formula
return Statement (vars2Cons ψ cn) ByContext

If the user gives no additional proving method, the remaining goal is given to the
provers via finalProof.

finalProof φ cn = Statement (vars2Cons φ cn) ByContext

56 Chapter 6. Implementation of ELFE

6.2 Verifying proof obligations

To check the correctness of statements annotated with BYCONTEXT and BYSUBCON-
TEXT, several background provers are invoked by calling verify with the goal for-
mula and the context. All background provers are called concurrently and are ter-
minated as soon as the first prover finds a result. Some of the background provers
provide a countermodel if an obligation is incorrect. This is depicted here by the
second element of the tuple returned by runProcess. If no prover finds a proof or
countermodel, the timeout thread will trigger termination of all threads. We assume
that the background provers work correctly and trust their results.

We use the semaphore done to synchronize termination. Additionally, the chan-
nel result is used to communicate the result. Constants from the configuration as
TIMEOUT and PROVERS are denoted uppercase. In the actual implementation, createTask
creates a file containing the TPTP task as introduced in Section 2.3.1.

verify :: Formula -> Context -> Result
verify φ Γ = do

done <- newSemaphore
result <- newChannel
task <- createTask φ Γ
threads <- createThreads (prove task prover result done) PROVERS
timeoutThread <- createThread (timeout result done)
readSemaphore done
result <- readChannel result
killThreads timeoutThread, threads
return result

prove :: Task -> Prover -> Channel Result -> Semaphore Bool
prove task prover result done = do

res × countermodel <- runProcess prover task
if res == pos

writeChannel result Correct
putSemaphore done True

else if res == neg
writeChannel result Incorrect countermodel
putSemaphore done True

timeout :: Channel Result -> Semaphore Bool
timeout result done = do

threadDelay TIMEOUT
writeChannel result Unknown
putSemaphore done True

6.3 Verifying a statement sequence

With the algorithm introduced in Section 6.2, one can check if a formula follows from
a context. With that, we can check the correctness of statements and sequences as

6.3. Verifying a statement sequence 57

given in Definition 4.5. As we recall, statements annotated by ASSUMED are consid-
ered correct. Statements annotated with BYCONTEXT and BYSUBCONTEXT will be
sent to the background provers. To check correctness of statements annotated with
BYSEQUENCE and BYSPLIT, the correctness of all of their children will be taken into
account.

verifyStat :: Statement -> Context -> Result
verifyStat (Statement φ Assumed) Γ = Correct
verifyStat (Statement φ ByContext) Γ = verify φ Γ
verifyStat (Statement φ (BySubContext Id1, ..., Idn))Γ = verify φ ΓId1,...,Idn
verifyStat (Statement φ (BySequence S1, ..., Sn)) Γ = verifySeq S1, ..., Sn Γ
verifyStat (Statement φ (BySplit S1, ..., Sn)) Γ = verifySplit S1, ..., Sn Γ

As soon as one of the statements in the derivation of a statement proven BYSPLIT or
BYSEQUENCE could not be proven by the background provers, the statement will be
considered Incorrect. This is a simplification of the implemented algorithm where
all partial results will be saved in an appropriate data structure. We omit this part
here. Once a statement is checked, it adds to the context in BYSEQUENCE, while the
contexts for the children in BYSPLIT are distinct. This corresponds to Definition 4.3
where we introduced contexts as only containing statements before and above the
current statement.

verifySeq :: [Statement] -> Context -> Result
verifySeq ∅ Γ = Correct
verifySeq S1, ..., Sn Γ = do

status <- verifyStat S1 Γ
if status /= Correct

return Incorrect
else

verifySeq S2, ..., Sn (Γ, S1)

verifySplit :: [Statement] -> Context -> Result
verifySplit ∅ Γ = Correct
verifySplit S1, ..., Sn Γ = do

status <- verifyStat S1 Γ
if status /= Correct

return Incorrect
else

verifySplit S2, ..., Sn Γ

59

Chapter 7

Evaluation of ELFE

ELFE is still in a prototypical state. It was tested by students of Imperial College
London. In Section 7.2, we will take a look at their evaluation and suggestions.
Since I already used the system thoroughly, I will present my experiences in Section
7.1.

7.1 Limits of the system

Since first-order logic is an intuitive way to write down proofs in set theory and
relations, proofs in these domains could be written down easily. Working with the
functions library was more complex. Especially functions like ’funApp’ which were
introduced to make a proof more readable for humans increases the difficulty for the
background provers. Thus, it is often hard to assess if a proof itself is wrong or only
takes a long time to prove. Debugging a failing proof is still difficult with the user
interface provided by ELFE. In most cases, I had to look at the TPTP tasks given to
the background provers and manually delete and change the given premises to find
out where I went wrong.

BEAGLE was able to provide countermodels to a wrong proof only in a few cases. Re-
stricting the context of a derivation step increased the success rate significantly. Since
I am familiar with the operating principle of ELFE, I was then able to understand the
countermodel. For new users it is certainly difficult to relate a countermodel to the
entered text.

The ’Let’ construction was useful to shorten definitions and proofs. However, this
construction hides what is going on under the hood. This sometimes can be con-
fusing. The notations have turned out to be a very powerful construct to ease the
readability of proofs. New notations can be introduced easily and make a proof look
quite intuitive.

As we see in Figure 7.1, most of the proofs could be verified quite fast. The parser
has a longer runtime if many syntactic sugars are introduced. The performance of
the parser certainly can be improved. The verification time took in particular long if
there were many premises, e.g., if we used the functions library.

60 Chapter 7. Evaluation of ELFE

Name of the proof Parsing Verifying Total

Complement of a complement of a set 23.9 ms 357.0 ms 380.9 ms
Injective composition 276.1 ms 9912.0 ms 10190.0 ms
Composition of function and its inverse 426.0 ms 661.7 ms 1088.0 ms
Transitive, symmetric and bound relation 28.9 ms 186.4 ms 215.4 ms
Union of relation and its inverse 20.7 ms 592.8 ms 613.5 ms
Set complement and union distribution 40.5 ms 1527.0 ms 1568.0 ms
Set union and intersection distribution 32.5 ms 4672.0 ms 4705.0 ms
Subrelation and symmetry 23.1 ms 557.8 ms 580.9 ms
Inverse and complement of a relation 42.3 ms 671.8 ms 714.1 ms
Cantor’s theorem 321.3 ms 4041.0 ms 4362.0 ms
Knaster-Tarski theorem 4 500.0 ms 31 540.0 ms 36 040.0 ms

FIGURE 7.1: Benchmarking the implemented proofs

Probably the systems biggest limitation is the fact that it maps into first-order logic.
Some domains like set theory are fairly well axiomatizable within ELFE, while some
properties like well-foundedness are not expressible at all.

Another problem that occurred was that the background provers were too clever.
They sometimes find intermediate steps that are not at all obvious for a human
reader. This is in particular problematic with proofs by contradiction. If the back-
ground provers find the inconsistency caused by the assumption, all derivations a
user may make are trivially also true, even though they do not make sense in the
proof.

7.2 User feedback

The system was tested with 12 students of Computing and Electrical Engineering.
At first, they were given the proof in Text 7.2. All were able to identify the proof
pattern and complete the proof. Later on, they were given more complex proofs.
Some of them were able to complete them. Once they gained an understanding of
the proof, most of them were able to formalize it in the system.

7.2. User feedback 61

Include sets.
Let A be set.
Let x be element.
Lemma: ((AC)C) = A.
Proof:

Proof ((AC)C) ⊆ A:
Assume x ∈ ((AC)C).
Then not x ∈ (AC).
Hence x ∈ A.

qed.
Proof A ⊆ ((AC)C):
qed.

qed.

TEXT 7.2: To completed proof by students

After they tried the system, they were given the following statements and had to
indicate with 1 (strongly agree) to 6 (strongly disagree) their agreement with the
statements.

• I enjoy writing mathematical proofs.
Mean: 3.3 – Median: 3,5

• I find writing mathematical proofs difficult.
Mean: 2.6 – Median: 2

• I think computers can be of use in learning how to write mathematical proofs.
Mean: 2.3 – Median: 2

• I enjoyed writing mathematical proofs in the ELFE system.
Mean: 2.5 – Median: 2

• I found the feedback of the system helpful.
Mean: 2.6 – Median: 2

• I would like to know how ELFE and interactive theorem proving works.
Mean: 1.8 – Median: 1

As we see, the testers were not especially keen on writing mathematical proofs. Writ-
ing proofs inside the system made it a bit more enjoyable. The system seems to have
succeeded in waking interest for interactive theorem proving.

In text form, they could also write down what they liked about the system and what
should be improved. It was highlighted that the language was "simple and clear"
and did not "get in the way of the proof". They liked the "very understandable
and simple UI" and their reactiveness. As improvements for the user interface they
proposed autocompletion features of the proofs and syntax highlighting. The given
raw translations of the mathematical text were not easy to understand. One user
also pointed out that the background provers are sometimes too clever – thus, a text
is accepted even if crucial cornerstones of a proof are missing. He would like to have
a criteria on when a proof is "complete" for human and not only for a computer.

63

Chapter 8

Related work

In the following we will give an overview of current approaches to interactive the-
orem proving. In Section 8.1, we will take a look at mathematical text verifiers like
the SYSTEM FOR AUTOMATED DEDUCTION, which heavily influences this project.
In Section 8.2, we will present two of the most popular interactive theorem provers,
ISABELLE and COQ. Finally, we will take a look at a new development in Section 8.3,
automated theorem provers for typed higher-order logic.

8.1 Mathematical text verifier

In the following, we will present two projects aimed for verifying mathematical
texts: The SYSTEM FOR AUTOMATED DEDUCTION (SAD) in Section 8.1.1 and NAPROCHE

in Section 8.1.2. Strictly speaking, these are also interactive theorem provers since
they build a bridge between automatic theorem proving and human mathemati-
cians. However, the explicit goal of these projects was to verify natural-sounding
mathematical proofs. The technical part of the verification process should be hidden
from the users.

8.1.1 SYSTEM FOR AUTOMATED DEDUCTION

The SAD was developed at the University Paris and the Taras Shevchenko National
University of Kyiv. It continues the project "Algoritm Ochevidnosti" (algorithm of
obviousness) which was initiated by the soviet researcher Victor Glushkov in the
1960s [27]. His purpose was to develop a tool that shortens long but "obvious" proofs
to users. These omitted parts should be verified by automated theorem provers. The
early stages of such a machine should already be used for teaching students since
"to understand a proof means to be able to explain it to a machine that is operating
with a relatively unsophisticated algorithm". [13, p.111]

SAD uses the input language FORTHEL. It is possible to express complex mathemat-
ical statements in a quite natural way. FORTHEL texts are converted to an ordered
set of first-order formulas. The structure of the initial text is preserved such that nec-
essary proof tasks can be defined. These tasks are then given to an ATP. The internal
reasoner may simplify tasks and omit trivial statements. Afterwards, the verifica-
tion status of the text is given to the user. For each proof task, the result of the used
ATP is returned. This allows to inspect possible sources of failing tasks, but requires
knowledge of how the background provers work. [28]

64 Chapter 8. Related work

Consider the example in Text 8.1. This FORTHEL text formalizes the lemma proved
by ELFE in Text 4.17. We see strong similarities since our system was based on
FORTHEL. In the first line, it is introduced that singular and plural tokens both de-
scribe the same elements. Then, the predicates ’element’ and ’relation’ are introduced
to the parser. These predicates hold for all elements – in contrast to the ’Let’ con-
struction as introduced in Section 4.6.1 which only types certain elements. However,
it is still necessary to identify x, y, z as elements and R as relations so that the parser
will recognize these tokens. The ’Signature’ command is similar to our ’Notation’
command from Section 4.4.1 and introduces syntactic sugar to the parser.

To prove the lemma, SAD detects that we want to unfold the definition ’DefRef’. The
syntax is not as fixed as in ELFE where ’Then’ and ’Hence’ have distinct meanings in
different proving techniques. In SAD, they can be used interchangeably. However,
the parser still recognizes that the user wants to show an implication. The proof then
is analogous to our proof.

[element/-s] [relation/-s]

Signature ElmSort. An element is a notion.
Signature RelSort. A relation is a notion.

Let x,y,z denote elements.
Let R denote relations.

Signature RelApp. R[x,y] is an atom.

Definition DefSym. R is symmetric iff for all x,y : R[x,y] => R[y,x].
Definition DefBou. R is bound iff for all x : exists y : R[x, y].
Definition DefTrans. R is transitive iff for all x,y,z : (R[x,y] or R[y,z]) => R[x,z].
Definition DefRef. R is reflexive iff for all x : R[x, x].

Proposition.
Let R be a transitive symmetric bound relation. Then R is reflexive.

Proof.
Let x be an element.
Take y such that R[x,y].
Then R[y,x].
Then R[x,x].

qed.

TEXT 8.1: FORTHEL text about relations

8.1.2 NAPROCHE

The NAPROCHE system was a joined project between mathematicians at the Univer-
sity of Bonn and linguists at the University of Duisburg-Essen. Its central goal was to
develop a controlled natural language (CNL) which checks semi-formal mathemat-
ical texts. The input are texts in a LATEX style language, consisting of mathematical
formulas embedded in a controlled natural language. The semantics of PRS have

8.2. Interactive theorem prover 65

been researched extensively, however, the project is not continued and has no work-
ing version online. [17]

To extract the semantics of a CNL text, NAPROCHE adapts a concept from computa-
tional linguistics: Proof Representation Structures (PRS) enrich the linguistic concept
of Discourse Representation Structures in such a way that they can represent math-
ematical statements and their relations. Consider the example in Figure 8.2. The
PRS describes a proof_1 which starts with the observation that there is no element
in the empty set. The inner PRS with the identifier 0 links with Drefs to another
discourse referent 1, i.e., the outer PRS. The mathematical referent after Mrefs is the
actual statements of this referent, i.e., the first-order formula that there is no set in
the empty set. In order to verify the PRS, one has to check the conditions in Conds,
i.e., that there is indeed an empty set. The user can then proceed with the rest of the
proof in consec_2.

FIGURE 8.2: Proof Representation Structure [8]

Even though our construction of statement sequences was driven by thinking in
data-structures and less linguistically, it was certainly influenced by NAPROCHE.

8.2 Interactive theorem prover

The classical approach to interactive theorem proving integrates a human user strongly
in the technical verification process. We will present the popular provers ISABELLE

in Section 8.2.1 and COQ in Section 8.2.2 here.

We compare our system with ISABELLE and COQ in the following with respect to a
proof of Cantor’s theorem. The theorem states that there exists no surjective func-
tion f from a set A to its powerset P(A). It uses a diagonalization argument, i.e,
constructs the subset M of P(A) with M := {x ∈ A | x /∈ f(x)}, which leads to a
contradiction.

Proving Cantor’s theorem in ELFE as shown in Text 8.3 is not straightforward. We
experimented with offering a possibility to write set comprehensions, however, this
requires to transform all predicates used as set conditions to terms. Instead, we had
to introduce the diagonalization of A as a separate definition. Apart from that defi-
nition, the proof is quite intuitive: First, we make a case distinction on whether ’A’
is empty. If it is, the powerset still contains the empty set and thus, it is not possible

66 Chapter 8. Related work

to construct a surjective function.

To prove the theorem if ’A’ is not empty, we save the diagonalization of ’A’ in ’M’.
Since ’M’ is in the powerset of ’A’ and we assumed ’f’ to be surjective, we can obtain
an ’a’ that maps to ’M’. This leads to the contradiction that ’a’ is both in ’M’ and not
in ’M’. To make this contradiction obvious, we made a case distinction.

Include functions.

Let A be set.

Definition: for all f. f: A -> (A℘) implies diagonalized(A) is set and (for all x.
x ∈ diagonalized(A) iff (x ∈ A and (for all y ∈ (A℘). f[x,y] implies not x ∈ y))).

Lemma: for all f. f: A -> (A℘) implies f is not surjective.
Proof:

Assume exists f. f: A -> (A℘) and f is surjective.
Case A is empty:

Then A℘ is nonempty.
Then contradiction.

qed.
Case A is nonempty:

Take M such that M = diagonalized(A).
Then M ∈ (A℘).
Take a such that a ∈ A and f[a,M].
Case a ∈ M:

Then not a ∈ M.
Then contradiction.

qed.
Case not a ∈ M:

Then a ∈ M.
Then contradiction.

qed.
qed.
Hence contradiction.

qed.

TEXT 8.3: ELFE proof of Cantor’s theorem

8.2.1 ISABELLE

ISABELLE is a joined project of the Cambridge University and the TU Munich. It
supports polymorphic higher-order logic, augmented with axiomatic type classes.
It is designed for interactive reasoning in a variety of formal theories. At present it
provides useful proof procedures for Constructive Type Theory , various first-order
logics, Zermelo-Fraenkel set theory, and higher-order logic. [22]

Canthor’s theorem can be proved in ISABELLE straightforwardly as we see in Text
8.4. Similar to our proof in ELFE, we make a proof by contradiction. The diagonal-
ization of ’A’ can be defined directly since ISABELLE works with higher-order logic.

8.2. Interactive theorem prover 67

Analogously to our proof in ELFE, we can obtain an ’a’ that maps to ’M’ and con-
clude the contradiction. We have to explicitly tell which automated theorem proving
technique should be used to derive these conclusions. The technique ’auto’ works
just with logical simplifications, i.e., term rewriting. The tactic ’blast’ calls a tableau
prover.

theory Cantor
imports Main

begin

theorem Cantor: "@f :: ’a ⇒ ’a set. ∀A. ∃x. A = f x"
proof

assume "∃f :: ’a ⇒ ’a set. ∀A. ∃x. A = f x"
then obtain f :: "’a ⇒ ’a set" where *: "∀A. ∃x. A = f x" ..
let ?M = "x. x /∈ f x"
from * obtain a where "?M = f a" by auto
moreover have "a ∈ ?M ←→ a /∈ f a" by auto
ultimately show False by blast

qed

TEXT 8.4: Cantors theorem with ISABELLE

SLEDGEHAMMER

Isabelle has several built-in proof techniques which need to be called explicitly. In
2007 the extension SLEDGEHAMMER was developed. SLEDGEHAMMER calls in par-
allel several ATP like E PROVER, SPASS and VAMPIRE. Since higher-order logic is
not in general reducible to first-order logic, this requires many unsound derivations.
Thus, ISABELLE will only extract which of the premises were used by the ATP and
then try to reconstruct the proof with its own proving techniques. [21]

SLEDGEHAMMER requires no further configuration and is called by mouse-click. In
a recent study, 34% of nontrivial goals contained in representative ISABELLE texts
could be proved by SLEDGEHAMMER. With this extension, ISABELLE allows also
beginners to prove challenging theorems. The creators note that SLEDGEHAMMER

was not designed as a tool to teach ISABELLE. Instead, it was focused primarily
on experienced users. However, they realized that it changed the way ISABELLE is
taught. Beginners do not have to learn about low level proving tactics and how they
work – it is not straightforward to get an intuition which tactics may be suited for
which problem without deeper knowledge of automated theorem proving. Instead,
they can focus on the proof from a higher level. Additionally, SLEDGEHAMMER finds
which lemmas are relevant to a proof. This dispenses the necessity to memorize
lemmas of background libraries. [21] In fact, all proving tactics used in Text 8.4 can
be found quickly by using SLEDGEHAMMER.

8.2.2 COQ

COQ is an interactive theorem prover initially developed 1984 at INRIA. It is based
on the Curry–Howard correspondence which relates types to classical logic. COQ

68 Chapter 8. Related work

was used in proving the four color theorem. [14]

Text 8.5 shows the proof of Cantor’s theorem in COQ. Since we have types at our
disposal, we can easily define surjective functions. In the first line of the proof, we
simply assume that there exists a ’f’ that meets the assumptions, i.e., is surjective.
The diagonalization is then saved within the function ’g’. Afterwards, we introduce
the additional assumption ’B’ which fixes a ’x’ from the image of ’f’. Then we intro-
duce the assumption ’C’ which states that ’g x’ and ’f x x’ are equal. This is proven by
rewriting ’B’. Finally, we unfold the definition of ’g’ which leads to the contradiction
’f x x <-> not f x x ’.

Set Implicit Arguments.
Unset Strict Implict.
Require Import
Require Import List.
Import ListNotations.

Definition surjective (X Y : Type) (f : X -> Y) : Prop := forall y, exist x, f x = y.

Theorem Cantor X : not exists f : X -> X -> Prop, surjective f.
Proof.

intros [f A].
pose (g := fun x => not f x x).
destruct (A g) as [x B].
assert (C:g x <-> f x x).
{

rewrite B. tauto.
}
unfold g in C. tauto.

Qed.

TEXT 8.5: Cantors theorem with COQ

8.3 Higher order automatic theorem prover

The TPTP syntax is a widely accepted standard and made it possible to easily imple-
ment ATP in interactive theorem provers. Since 2008 the new syntax version THF
has been developed. Its goal introduce a language standard for higher-order logic
based on Church’s simple type theory. [5]

Consider the exemplary THF text in Figure 8.6 which proves the associativity of the
union of sets. From the two basic types $i and $o a user can construct other types
with the type constructor >. In this example, elements of a set have the type $i and
sets the type $i > $o. Function application can be done with @. In the conjecture,
associativity is proven for all sets A, B and C.

8.3. Higher order automatic theorem prover 69

thf(in_type,type,(in: $i > ($i > $o) > $o)).
thf(union_type,type,(union: ($i > $o) > ($i > $o) > ($i > $o))).
thf(in,axiom,((in = (^ [X: $i,S: ($i > $o)] : (S @ X))))).
thf(union,axiom,((

union = (^ [S1: ($i > $o),S2: ($i > $o),U: $i] :
((in @ U @ S1) | (in @ U @ S2)))))

).
thf(union_distribution,conjecture,(

! [A: ($i > $o),B: ($i > $o),C: ($i > $o)] :
((union @ (union @ A @ B) @ C) = (union @ A @ (union @ B @ C))))

).

FIGURE 8.6: Exemplary THF file [5]

The THF syntax is already implemented in several automated theorem provers. LEO

for example is currently developed at the Free University of Berlin. It is a self-
contained higher-order theorem prover based on ordered paramodulation and su-
perposition. The system attempts to remove higher-order features from the problem
so that it can be solved efficiently by first-order provers, but also has a own higher-
order reasoning calculus. LEO has been integrated in ISABELLE. [6]

71

Chapter 9

Conclusion

In the following, we will first summarise our work in Section 9.1. There are numer-
ous ways to extend and improve ELFE in the future. We will take a look at these in
Section 9.2.

9.1 Deliverables

In this work, we developed statement sequences for representing mathematical proofs.
This data structure acts as a powerful intermediate language between mathematical
texts and ATP. The web interface provides an intuitive way to interact with the sys-
tem. Together with the background library, this allows for quickly writing proofs.

The big goal of this work was to detach the users of interactive theorem provers from
the technicalities of ATP. While this is certainly not suitable for all use cases, it is
desirable if we want to use computers in teaching mathematics. This work provides
a proof of concept that this is feasible and sensible.

9.2 Future work

Given the limited time frame of this work, there are numerous ways to extend the
system. In the following, we will first take a look at iterative improvements and
extensions to the system in Section 9.2.1 and then give an outlook on a conceptually
revised version of the tool in Section 9.2.2.

9.2.1 Improvements and extensions

The language constructs presented here were the result of formalizing several ex-
emplary proofs. If one formalizes more proofs, he will probably feel the need for
additional proving methods. If one can map the proving methods soundly into state-
ment sequences, this should be easy to implement. Students often prove problems
in discrete mathematics with induction. This is not directly realisable in ELFE since
well-foundedness cannot be expressed in first-order logic. An interesting approach
could be to transform the relevant predicates and terms into an TRS. Termination of
TRS is extensively researched and tools such as APROVE [11] could be queried in
the background to show the soundness of proofs by induction.

So far, arithmetic proofs could be formalized in ELFE. However, it is tedious to define
the standard interpretation of arithmetic. The background prover Z3 and BEAGLE

already provide background theories for arithmetic. Evidently, it would be good to

72 Chapter 9. Conclusion

use these features. In order to do this, additional parsing of integers and arithmetic
operations needs to be implemented.

The countermodels found by BEAGLE are currently presented in raw form to the
user. Another extension could aim to link this countermodel more directly to the
mathematical text to ease understanding. Additionally, the different automated the-
orem provers provide other hints that could be of use for user. The used input for-
mulas could be given to point out which premises were relevant to a proof. The
derivation sequence as given by E PROVER or Z3 could be processed such that it is
possible for a user to retrace the proofs. If one does not understand why a proof
works, this could introduce intermediary steps in the proof.

Some mathematical statements cannot be expressed in first-order logic directly, but
in higher-order logic that is reducible to first-order logic. Set comprehensions and
properties of predicates like symmetry could be introduced with additional lan-
guage constructs and internally transformed into first-order logic.

As the background theories grow, we probably need more features like namespac-
ing. To increase the performance of the background provers, internal premise selec-
tion could be implemented.

For the user interface, features like autocompletion of proof structures and syntax
highlighting could ease the access to the system.

9.2.2 ELFE with higher-order ATP

As we introduced in Section 8.3, the last years have seen interesting advances in
automated proving of higher-order logic. Since first-order has certain limitations, it
might be good to utilize these provers. THF provides a comfortable interface to the
provers.

Higher order logic allows for expressing many more domains in a natural way. A
strong type system allows to detect insensible mathematical texts before giving them
to background provers. Thus, it would be interesting to extend ELFE by a type sys-
tem. This extension requires a rewrite of the core of the system. It would be to
examine if statement sequence still are a sensible representation of the proof obliga-
tions.

With that, the system may become as powerful as ISABELLE or COQ. In contrast to
these provers, the technical part of ATP could be abstracted away. Theorem provers
then could become a valuable tool in teaching mathematics.

73

Bibliography

[1] ELFE - Interactive Theorem Proving for students, https://github.com/maxdore/
elfe, Accessed: 2017-06-18.

[2] SPASS History, http://www.mpi-inf.mpg.de/departments/
automation-of-logic/software/spass-workbench/history/, Accessed: 2017-
06-18.

[3] L. Bachmair and H. Ganzinger, Rewrite-based equational theorem proving with selec-
tion and simplification, Journal of Logic and Computation, 4(3):217–247, 1994.

[4] P. Baumgartner, J. Bax and U. Waldmann, Beagle – A Hierarchic Superposition The-
orem Prover, Proc. 25th International Conference on Automated Deduction, Lec-
ture Notes in Artificial Intelligence, 9195:367–377, 2015.

[5] C. Benzmüller, F. Rabe and G. Sutcliffe, THF0 – The Core of the TPTP Language for
Higher-Order Logic, Proc. Automated Reasoning: 4th International Joint Confer-
ence, Lecture Notes in Artificial Intelligence, 5195:491–506, 2008.

[6] C. Benzmüller, N. Sultana, L. Paulson, F. Theiß, The Higher-Order Prover Leo-II
Journal of Automated Reasoning, 55(4):389–404, 2015.

[7] C. Chang and R. Char-Tung Lee, Symbolic Logic and Mechanical Theorem Proving,
Elsevier, 1973.

[8] M. Cramer, Mathematisch-logische Aspekte von Beweisreprasentationsstrukturen(In
German), 2009.

[9] M. Fitting, First-Order Logic and Automated Theorem Proving, 2nd Edition,
Springer, 1996.

[10] G. Gentzen, Untersuchungen über das logische Schließen(in German), Mathematis-
che Zeitschrift, 39:176–210, 1935.

[11] J. Giesl, P. Schneider-Kamp and R. Thiemann, AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework, Proc. Automated Reasoning: Third In-
ternational Joint Conference, Lecture Notes in Computer Science, 4130:281–286,
2006.

[12] J. Giesl, Termersetzungssysteme(in German), 2011.

[13] V. Glushkov, Problems in the Theory of Automata and Artificial Intelligence, Journal
of Cybernetics, 1(1):97–113, 1971.

[14] G. Gonthier, Formal proof–the four-color theorem, Notices of the American Mathe-
matical Society, 55(11):1382–1393, 2008.

[15] E. Grädel, Mathematische Logik(in German), 2016.

https://github.com/maxdore/elfe
https://github.com/maxdore/elfe
http://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/history/
http://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/history/

74 BIBLIOGRAPHY

[16] J. Harrison, Handbook of Practical Logic and Automated Reasoning, Cambridge Uni-
versity Press, 2009.

[17] D. Kühlwein, M. Cramer, P. Koepke and B. Schröder, The Naproche system, Proc.
18th Symposium of Intelligent Computer Mathematics, Lecture Notes in Artifi-
cial Intelligence, 6824:180–195, 2009.

[18] D. Kroening and O. Strichman, Decision Procedures: An Algorithmic Point of View,
2nd edition, Springer, 2008.

[19] L. de Moura, N. Bjørner, Z3: An Efficient SMT Solver, Lecture Notes in Computer
Science, 4963:337–340, 2008.

[20] A. Newell and H. Simon, The logic theory machine–A complex information process-
ing system, Information Theory, 2(3):61–79, 1956.

[21] L. Paulson and J. Blanchette, Three years of experience with Sledgehammer: A Prac-
tical Link Between Automatic and Interactive Theorem Provers, Proc. 8th International
Workshop on the Implementation of Logics, 2015.

[22] L. Paulson, Isabelle: The next 700 theorem provers, Logic and computer science,
31:361–386, 1990.

[23] A. Riazanov and A. Voronkov, The design and implementation of VAMPIRE, AI
Communications, 15(2,3):91–110, 2002.

[24] G. Robinson and L. Wos, Paramodulation and Theorem-Proving in First-Order The-
ories with Equality, Automation of Reasoning, 2:298–313, 1983.

[25] G. Sutcliffe, The TPTP Problem Library and Associated Infrastructure, Journal of
Automated Reasoning, 43(4):337–362, 2009.

[26] S. Schulz, E - a brainiac theorem prover, AI Communications, 15(2,3):111–126,
2002.

[27] K. Vershinin and A. Paskevich, ForTheL — the language of formal theories, IJ In-
formation Theories and Applications, 7:121–127, 2000.

[28] K. Verchinine, A. Lyaletski and A. Paskevich, System for Automated Deduc-
tion(SAD): A Tool for Proof Verification, Proc. 21st International Conference on Au-
tomated Deduction, Lecture Notes in Artificial Intelligence, 4603:398–403, 2007.

[29] C. Weidenbach, Combining Superposition, Sorts and Splitting, Handbook of Auto-
mated Reasoning, Elsevier, 1965–2013, 2001.

75

Appendix A

Running proofs

Complement of a complement of a set

Include sets.

Let A be set.

Lemma: ((AC)C) = A.
Proof:

Proof ((AC)C) ⊆ A:
Assume x ∈ ((AC)C).
Then not x ∈ (AC).
Hence x ∈ A.

qed.
Proof A ⊆ ((AC)C):

Assume x ∈ A.
Then not x ∈ (AC).
Hence x ∈ ((AC)C).

qed.
qed.

Injective composition

Include functions.

Let A,B,C be set.

Let f: A -> B.
Let g: B -> C.

Lemma: g◦f is injective implies f is injective.
Proof:

Assume g◦f is injective.
Assume x1 ∈ A and x2 ∈ A and (f{x1}) = (f{x2}).
Then ((g◦f){x1}) = ((g◦f){x2}).
Hence x1 = x2.
Hence f is injective.

qed.

76 Appendix A. Running proofs

Composition of function and its inverse

Include functions.

Let A,B be set.
Let f: A -> B.

Lemma: f is bijective implies (f-1)◦f is identity.
Proof:

Assume f is bijective.
Assume x ∈ A.
Take y such that y ∈ B and f[x,y] by function.
Then (f-1)[y,x] by inverse.
Then ((f-1)◦f)[x,x] by inverse, composition.
Hence ((f-1)◦f)[x,x].
Hence (f-1)◦f is identity.

qed.

Transitive, symmetric and bound relation

Include relations.

Let R be relation.

Lemma: transitive(R) and symmetric(R) and bound(R) implies R is reflexive.
Proof:

Assume transitive(R) and symmetric(R) and bound(R).
Proof for all x. R[x,x]:

Fix x.
Take y such that R[x,y] by boundness.
Then R[y,x] by symmetry.
Then R[x,x].

qed.
Hence R is reflexive.

qed.

Appendix A. Running proofs 77

Union of relation and its inverse

Include relations.

Let R be relation.

Lemma: R ∪ (R-1) is symmetric.
Proof:

Assume (R ∪ (R-1))[x,y].
Then R[x,y] or (R-1)[x,y].
Case R[x,y]:

Then (R-1)[y,x].
qed.
Case (R-1)[x,y]:

Then R[y,x].
qed.
Hence (R ∪ (R-1))[y,x].

qed.

Set complement and union distribution

Include sets.

Let A,B be set.

Lemma: ((A ∪ B)C) = ((AC) ∩ (BC)).
Proof:

Proof ((A ∪ B)C) ⊆ ((AC) ∩ (BC)):
Assume x ∈ ((A ∪ B)C).
Then not x ∈ (A ∪ B).
Then not x ∈ A and not x ∈ B.
Then x ∈ (AC) and x ∈ (BC).
Hence x ∈ ((AC) ∩ (BC)).

qed.
Proof ((AC) ∩ (BC)) ⊆ ((A ∪ B)C):

Assume x ∈ ((AC) ∩ (BC)).
Then x ∈ (AC) and x ∈ (BC).
Then not x ∈ A and not x ∈ B.
Then not x ∈ (A ∪ B).
Hence x ∈ ((A ∪ B)C).

qed.
qed.

78 Appendix A. Running proofs

Set union and intersection distribution

Include sets.

Let A,B,C be set.

Lemma: (A ∩ (B ∪ C)) = ((A ∩ B) ∪ (A ∩ C)).
Proof:

Proof (A ∩ (B ∪ C)) ⊆ ((A ∩ B) ∪ (A ∩ C)):
Assume x ∈ (A ∩ (B ∪ C)).
Then x ∈ A and x ∈ (B ∪ C).
Then x ∈ B or x ∈ C.
Then x ∈ (A ∩ B) or x ∈ (A ∩ C).
Hence x ∈ ((A ∩ B) ∪ (A ∩ C)).

qed.
Proof ((A ∩ B) ∪ (A ∩ C)) ⊆ (A ∩ (B ∪ C)):

Assume x ∈ ((A ∩ B) ∪ (A ∩ C)).
Then x ∈ (A ∩ B) or x ∈ (A ∩ C).
Then (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C).
Then x ∈ A and (x ∈ B or x ∈ C).
Hence x ∈ (A ∩ (B ∪ C)).

qed.
qed.

Subrelation and symmetry

Include relations.

Let R,S be relation.

Lemma: R ⊆ S and S is symmetric implies (R ∪ (R-1)) ⊆ S.
Proof:

Assume R ⊆ S and S is symmetric.
Assume (R ∪ (R-1))[x,y].
Then R[x,y] or (R-1)[x,y].
Case R[x,y]:

Then S[x,y] by subrelation.
qed.
Case (R-1)[x,y]:

Then R[y,x] by relationInverse.
Then S[y,x] by subrelation.
Then S[x,y] by symmetry.

qed.
Hence S[x,y].
Hence (R ∪ (R-1)) ⊆ S.

qed.

Appendix A. Running proofs 79

Inverse and complement of a relation

Include relations.

Let R be relation.

Lemma: ((R-1)C) = ((RC)-1).
Proof:

Proof (((R-1)C)[x,y]) ⊆ (((RC)-1)[x,y]):
Assume ((R-1)C)[x,y].
Then not (R-1)[x,y].
Then not R[y,x].
Then (RC)[y,x].
Hence ((RC)-1)[x,y].

qed.
Proof (((RC)-1)[x,y]) ⊆ (((R-1)C)[x,y]):

Assume ((RC)-1)[x,y].
Then (RC)[y,x].
Then not R[y,x].
Then not (R-1)[y,x].
Hence ((R-1)C)[x,y].

qed.
qed.

80 Appendix A. Running proofs

Cantor’s theorem

Include functions.

Let A be set.

Definition: for all f. f: A -> (A℘) implies diagonalized(A) is set and (for all x.
x ∈ diagonalized(A) iff (x ∈ A and (for all y ∈ (A℘). f[x,y] implies not x ∈ y))).

Lemma: for all f. f: A -> (A℘) implies f is not surjective.
Proof:

Assume exists f. f: A -> (A℘) and f is surjective.
Case A is empty:

Then A℘ is nonempty.
Then contradiction.

qed.
Case A is nonempty:

Take M such that M = diagonalized(A).
Then M ∈ (A℘).
Take a such that a ∈ A and f[a,M].
Case a ∈ M:

Then not a ∈ M.
Then contradiction.

qed.
Case not a ∈ M:

Then a ∈ M.
Then contradiction.

qed.
qed.
Hence contradiction.

qed.

Appendix A. Running proofs 81

Knaster–Tarski theorem

Include functions.

Let S,T,U be set.

Notation leq: x <= y.
Proposition: x <= x.
Proposition: x <= y and y <= x implies x = y.
Proposition: x <= y and y <= z implies x <= z.

Definition DefLB: for all u. lowerBound(u,S,T) iff S ⊆ T and u ∈ T and
(for all v ∈ S. u <= v).

Definition DefUB: for all u. upperBound(u,S,T) iff S ⊆ T and u ∈ T and
(for all v ∈ S. v <= u).

Definition infimum: for all u. infimum(u,S,T) iff S ⊆ T and u ∈ T and lower-
Bound(u,S,T) and

(for all lowerBound(v,S,T). v <= u).
Definition DefSup: for all u. supremum(u,S,T) iff S ⊆ T and u ∈ T and

lowerBound(u,S,T) and (for all lowerBound(v,S,T). u <= v).

Proposition InfUnique: S ⊆ T and infimum(u,S,T) and infimum(v,S,T) implies
u = v.

Proposition SupUnique: S ⊆ T and supremum(u,S,T) and supremum(v,S,T) implies
u = v.

Definition DefCLat: T is completeLattice iff for all S ⊆ T.
(exists u. infimum(u,S,T)) and (exists v. supremum(v,S,T)).

Let f: U -> U.

Definition SetFix: fixPoints(T) is set and (for all x ∈ T. x ∈ fixPoints(T) iff f[x,x]).
Definition DefMonot: f is monotone iff for all x1 ∈ T. for all x2 ∈ T. x1 <= x2
implies (for all y1 ∈ U. for all y2 ∈ U. f[x1,y1] and f[x2,y2] implies y2 <= y2).

Definition upperBounds: f is monotone implies upperBounds(U) is set and (for all x.
x ∈ upperBounds(U) iff x ∈ U and upperBound(x,T,U) and (for all y. f[x,y] implies
y <= x)).
Definition lowerBounds: f is monotone implies lowerBounds(U) is set and (for all x.
x ∈ lowerBounds(U) iff x ∈ U and lowerBound(x,T,U) and (for all y. f[x,y] implies x
<= y)).

82 Appendix A. Running proofs

Knaster–Tarski theorem (continued)

Lemma Tarski:
U is completeLattice and f is monotone implies fixPoints(U) is completeLattice.

Proof:
Assume U is completeLattice and f is monotone.
Assume M is set and M ⊆ fixPoints(U).

Proof exists u. supremum(u,M,fixPoints(U)):
Take P such that P = upperBounds(U).
Take p such that infimum(p,P,U).
Take y such that f[p,y].
Then lowerBound(y,P,U) and upperBound(y,M,U).
Then p = y and supremum(p,M,fixPoints(U)).

qed.

Proof exists v. infimum(v,M,fixPoints(U)):
Take Q such that Q = lowerBounds(U).
Take q such that supremum(q,Q,U).
Take y such that f[p,y].
Then upperBound(y,Q,U) and lowerBound(y,M,U).
Then q = y and infimum(q,M,fixPoints(U)).

qed.

Hence exists u. infimum(u,M,fixPoints(U)) and
(exists v. supremum(v,M,fixPoints(U))).

Hence fixPoints(U) is completeLattice.
qed.

83

Appendix B

Tutorial

The ELFE system allows for verifying mathematical proofs. In this tutorial, we will
take a look at its language features.

Formulas

In order to make mathematical statements, we use a language that is similar to first-
order logic. Concretely, we have the following syntax constructs at our disposal:

for all var. formula – an universally quantified statement
exists var. formula – an existentially quantified statement
formula iff formula – if and only if
formula implies formula – an implication
formula and formula – both should be true
formula or formula – either one is true
not formula – a negation
contradiction – corresponds to a ⊥ in first-order logic

We can use alphanumeric strings as variables. In order to introduce mathematical
properties, we will use atoms inside a formula. We can construct atoms as follows:

var is predicate
var is not predicate
term = term
predicate(term, ... , term)

For example, we may say ’R is symmetric’ or ’symmetric(R)’. Terms can be variables
or more complex – for example, the union of two sets A and B. This can be written
down similar with ’union(A,B)’. Alternatively, we can use syntactic sugar: A ∪ B. The
libraries contain several different sugars. Note that we need to insert brackets when
nesting sugars: ’((A ∪ B)C) = ((AC) ∩ (BC))’.

Top level commands

On the top level, we have six possible commands. The following three allow us to
introduce mathematical statements:

Definition formula. – define a statement
Proposition formula. – derive a statement without proof
Lemma formula. Proof: proof Qed. – make a proved statement

84 Appendix B. Tutorial

Definitions and propositions can be used to introduce facts to a proof. Lemmas are
the interesting part since here we can test our proofs – we will see in the next section
how to write a proof.

Besides these three statements, we can use the following statements to shorten our
proofs:

Include file. – includes a file of the library
Let var be predicate. – defines a meta-variable
Notation predicate: pattern. – introduces a notation

The inclusion command allows us to use background libraries. With the second
command we can assign a property to a variable for the whole text. For example,
if we define several properties about sets, we will write in the beginning ’Let A be
set’ and use ’A’ afterwards. The last command allows us to introduce own syntactic
sugars.

Include relations.
Notation disjunion: A Ů B.
Let A,B be relation.
Definition disjunionDef: (A Ů B)[x,y] iff A[x,y] or B[x,y] and not (A[x,y] and B[x,y]).
Proposition: A Ů B is relation.
Lemma disjunionAssociative: A Ů B = B Ů A.
Proof:

...
qed.

TEXT B.1: Exemplary use of top sections

Proof structures

There are three ways to prove a goal within ELFE.

Splitting the goal

In order to simplify a goal, we will often make several proofs that imply the original
goal:

Proof formula: proof Qed. – make several sub proofs
Case formula: proof Qed. – make case distinctions

The sub proofs can be completely unconnected – important is that the background
theory proves that all sub proofs together imply the original goal. Within a case
distinction, the specified formula is assumed and we want to derive the original
goal.

Unfolding the structure of the goal

Often, we will want to make assumptions in a proof.

Assume formula. – proof an implication
proof

Appendix B. Tutorial 85

Hence formula.

In order to prove an universally quantified statement, we can fix a particular ele-
ment:

Fix var. – fix an universally quantified variable

Deriving intermediary steps

We can derive cornerstones for a proof with the following statement:

Then formula. – derive a cornerstone

We will often want to retrieve a specific element that we use afterwards in our proof.
This can be done with this construction:

Take var such that formula. – fix an existing variable

...
Lemma disjunionAssociative: A Ů B = B Ů A.
Proof:

Assume (A Ů B)[x,y].
Case A[x,y]:

Then not B[x,y].
Then (B Ů A)[x,y].

qed.
Case B[x,y]:

Then not A[x,y].
Then (B Ů A)[x,y].

qed.
Hence (B Ů A)[x,y].

qed.

TEXT B.2: Exemplary proof

	Introduction
	Motivation
	Objectives
	Achievements

	Background
	Logical background
	First-order logic
	Natural Deduction
	Herbrand's Theorem

	Automated theorem proving
	Algorithm of Gilmore
	Resolution
	Term rewriting
	Superposition calculus
	Satisfiability modulo theories

	Implemented background provers
	TPTP format
	E Prover
	SPASS
	Z3
	Beagle

	Covered mathematical domains
	Relations
	Sets
	Functions

	Architecture of Elfe
	The Elfe language
	Statement sequences
	Verifying statement sequences
	Prover tasks
	Correctness of statement sequences

	Proving with statement sequences
	Proved statements

	Overview of the Elfe language
	Formulas
	Top level sections

	Derivations
	Splitting a goal
	Unfolding goals
	Inferring goals
	Extending the context
	Proving the final goal

	Meta level constructs
	Let construction
	Inclusions

	The Elfe system
	Library
	Relations
	Sets
	Functions

	Command line interface
	Web interface

	Implementation of Elfe
	Parsing derivations
	Verifying proof obligations
	Verifying a statement sequence

	Evaluation of Elfe
	Limits of the system
	User feedback

	Related work
	Mathematical text verifier
	System for Automated Deduction
	 Naproche

	Interactive theorem prover
	Isabelle
	Coq

	Higher order automatic theorem prover

	Conclusion
	Deliverables
	Future work
	Improvements and extensions
	Elfe with higher-order ATP

	Bibliography
	Running proofs
	Tutorial

